• Giuseppina Tommonaro Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei, 34, I-80078 Pozzuoli.
  • Concetta Piscitelli Università degli Studi della Campania “L. Vanvitelli”, Via Vivaldi 43, I-81100 Caserta,
  • Margherita Lavorgna Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “L. Vanvitelli”, Via Vivaldi 43, I-81100 Caserta
  • Marina Isidori Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “L. Vanvitelli”, Via Vivaldi 43, I-81100 Caserta
  • Chiara Russo Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “L. Vanvitelli”, Via Vivaldi 43, I-81100 Caserta
  • Rocco De Prisco
  • Gennaro Roberto Abbamondi Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei, 34, I-80078 Pozzuoli.
  • Carmine Iodice Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei, 34, I-80078 Pozzuoli.
Keywords: Lycopersicon esculentum, antioxidant properties, antiproliferative activity, colon adenocarcinoma cells, hepatocyte carcinoma cells


To increase the knowledge about the biological properties of tomatoes, the antioxidant and antiproliferative activities of extracts of nine cultivars of Lycopersicon esculentum, as well as their chemical composition, were studied. The highest antioxidant capacity has been revealed in San Marzano Cirio 3 and Pomodoro Giallo cultivars, both in hydrophilic and lipophilic fractions, while San Marzano, Corbarino di Corbara, and Pomodoro Giallo exhibited the best radical scavenger 
activity in methanolic fraction. As regards the antiproliferative activity, the median inhibition concentrations of the lipophilic extracts ranged from 272.3 (Pomodoro Giallo) to 364.4 (Corbarino di Corbara) mg dried extract L-1 on Hep-G2 and from 324.6 (San Marzano Cirio 3) to 455.4 (Nero di Sicilia) on Caco-2. The methanolic extracts were more active on Caco-2 than Hep-G2, while the hydrophilic extracts were not active. These biological properties could be ascribed to the identified 
carotenoids and phenolic acids as well as to a pull of minor compounds exerting their synergistic effect.


Download data is not yet available.


1. Valleverdù-Queralt, R., Jauregui, O., Di Lecce, G., Andres-Lacueva, C., Lamuela-Raventos, R.M. 2011.
Screening of the polyphenol content of tomato-based products through accurate-mass spectrometry (HPLC-ESI
QTOF). Food Chem., 129(3):877–883.
2. Sardaro, M.L.S., Marmiroli, M., Maestri, E., Marmiroli, N. 2013. Genetic characterization of Italian tomato varieties
and their traceability in tomato food products. Food Sci. Nutr., 1(1):54–62.
3. Kalogeropoulus, N., Chiou, A., Pyriochou, V., Peristeraki, A., Karathanos, V.T. 2012. Bioactive phytochemicals in
industrial tomatoes and their processing byproducts. LWT - Food Sci. Technol., 49(2):213–216.
4. Tommonaro, G., De Prisco, R., Abbamondi, G.R., Marzocco, S., Saturnino, C., Poli, A,, Nicolaus, B. 2012.
Evaluation of antioxidant properties, total phenolic content, and biological activities of new tomato hybrids of
industrial interest. J. Med. Food, 15(5):483–489.
5. Saturnino, C., Spagnuolo, A., Palladino, C., Popolo, A., Tommonaro, G., De Prisco, R., Pinto, A. 2013.
Antiproliferative activity of “Lycopersicon esculentum” leaves (var. Paul Robenson): preliminary study. Food Nutr.
Sci., 4:632–635.
6. Stajcic, S., Cetkovic, G., Canadanovic-Brunet, J., Djilas, S., Mandic, A., Cetojevic-Simin, D. 2015. Tomato waste:
Carotenoids content, antioxidant and cell growth activities. Food Chem., 172:225–232.
7. Chen, L., Stacewicz-Sapuntzakis, M., Duncan, C., Sharifi, R., Ghosh, L., van Breemen, R., Ashton, D., Bowen,
P.E. 2001. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a
whole-food intervention. J. Natl. Cancer Ins., 93(24):1872–1879.
8. Bowen, P., Chen, L., Stacewicz-Sapuntzakis, M., Duncan, C., Sharifi, R., Ghosh, L., Kim, H.S., Christov-Tzelkov,
K., van Breemen, R. 2002. Tomato sauce supplementation and prostate cancer: lycopene accumulation and
modulation of biomarkers of carcinogenesis. Exp. Biol. Med., 227(10):886–893.
9. Willcox, J.K., Catignani, G.L., Lazarus, S. 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr.,
10. Agrawal, R.C., Jain, R., Raja, W., Ovais, M. 2009. Anticarcinogenic effects of Solanum lycopersicum fruit extract
on Swiss albino and C57 Bl mice. Asian Pacific J. Cancer Prev., 10(3):379–382.
11. Martínez-Valverde, I., Periago, M.J., Provan, G., Chesson, A. 2002. Phenolic compounds, lycopene and
antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric., 82(3):323–
12. Strazzullo, G., De Giulio, A., Tommonaro, G., La Pastina, C., Poli, A., Nicolaus, B. 2007. Antioxidative activity and
lycopene and -carotene contents in different cultivars of tomato (Lycopersicon esculentum). Int. J. Food Prop.,
13. George, B., Kaur, C., Khurdiya, D.S., Kapoor, H.C. 2004. Antioxidants in tomato (Lycopersium esculentum) as a
function of genotype. Food Chem., 84(1):45–51.
14. Etminan, M., Takkouche, B., Caamaño-Isorna, F. 2004. The role of tomato products and lycopene in the
prevention of prostate cancer: A meta-analysis of observational studies. Cancer Epidemiol. Biomarkers Prev.,
15. Rao, A., Agarwal, S. 2000. Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr., 19(5):563–
16. Gómez-Romero, M., Segura-Carretero, A., Fernández-Gutiérrez, A. 2010. Metabolite profiling and quantification
of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, 71(16):1848–1864.
17. Passananti, M., Lavorgna, M., Iesce, M.R., Della Greca, M., Criscuolo, E., Parrella, A., Isidori, M., Temussi, F.
2014. Chlorpropham and phenisopham: phototransformation and ecotoxicity of carbamates in the aquatic
environment. Environ. Sci. Process Impacts, 16(4): 823–831.
18. Blois, M. 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181:1199–1200.
19. Miller, N.J., Sampson, J., Candeias, L.P., Bramley, P.M., Rice-Evans, C.A. 1996. Antioxidant activities of
carotenes and xanthophylls. FEBS Lett., 384(3):240–242.
20. Fogliano, V., Verde, V., Randazzo, G., Ritieni, A. 1999. Method for measuring antioxidant activity and its
application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem., 47(3):1035–1040.
21. Singleton, V.L., Rossi, J.A. 1965. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid
Reagents. Am. J. Enol. Vitic., 16(3):144–158.
22. Finore, I., Poli, A., Di Donato, P., Lama, L., Trincone, A., Fagnano, M., Mori, M., Nicolaus, B., Tramice, A. 2016.
The hemicellulose extract from Cynara cardunculus: a source of value-added biomolecules produced by
xylanolytic thermozymes. Green Chem., 18:2460-2472.
23. Olejnik, A., Lewandowska, M., Grajek, W., Czaczyk, K. 2003. New rapid method of Caco-2 cell differentiation.
Pol. J. Food Nutr. Sci., 12/53(SI1):60–64.
24. Parrella, A., Lavorgna, M., Criscuolo, E., Russo, C., Isidori, M. 2014. Estrogenic activity and cytotoxicity of six
anticancer drugs detected in water systems. Sci. Total Environ., 486(1):216–222.
25. Zanfini, A., Corbini, G., La Rosa, C., Dreassi, E. 2010. Antioxidant activity of tomato lipophilic extracts and
interactions between carotenoids and α-tocopherol in synthetic mixtures. LWT - Food Sci. Technol., 43:67–72.
26. Liu, D., Shi, J., Ibarrac, A.C., Kakudac, Y., Xue, S.J. 2008. The scavenging capacity and synergistic effects of
lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH free radical. LWT - Food Sci. Technol.,
27. Kotíková, Z., Lachman, J., Hejtmánková, A., Hejtmánková, K. 2011. Determination of antioxidant activity and
antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT - Food
Sci. Technol., 44(8):1703–1710.
28. Tommonaro, G., Caporale, A., De Martino, L., Popolo, A., De Prisco, R., Nicolaus, B., Abbamondi, G.R.,
Saturnino, C. 2014. Antioxidant and cytotoxic activities investigation of tomato seed extracts. Nat. Prod. Res.,
29. Rosales, M.A., Cervilla, L.M., Ríos, J.J., Blasco, B., Sánchez-Rodríguez, E., Romero, L., Ruiz, J.M. 2009.
Environmental conditions affect pectin solubilization in cherry tomato fruits grown in two experimental
Mediterranean greenhouses. Environ. Exp. Bot., 67(2):320–327.
30. Roselló, S., Adalid, A.M., Cebolla-Cornejo, J., Nuez, F. 2011. Evaluation of the genotype, environment and their
interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. J. Sci. Food Agric., 91(6):1014–
31. Tiwari, U., Cummins, E. 2016. Factors influencing levels of phytochemicals in selected fruit and vegetables during
pre- and post-harvest food processing operations. Food Chem., 66(4):72–78.
32. Salman, H., Bergman, M., Djaldetti, M., Bessler, H. 2007. Lycopene affects proliferation and apoptosis of four
malignant cell lines. Biomed. Pharmacother., 61(6):366–369.
33. Teodoro, A.J., Oliveira, F., Martins, N., Maia, G., Martucci, R., Borojevic, R. 2012. Effect of lycopene on cell
viability and cell cycle progression in human cancer cell lines. Cancer Cell Int., 12(1):36
34. Takeshima, M., Ono, M., Higuchi, T., Chen, C., Hara, T., Nakano, S. 2014. Anti-proliferative and apoptosis
inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci., 105(3):252–
35. Wei, M.Y., Giovannucci, E.L. 2012. Lycopene, tomato products, and prostate cancer incidence: A review and
reassessment in the PSA screening era. J. Oncol., doi:10.1155/2012/271063.
36. Thapa, D., Ghosh, R. 2012. Antioxidants for prostate cancer chemoprevention: Challenges and opportunities.
Biochem. Pharmacol., 83(10):1319–1330.
37. Rajendra Prasad, N., Karthikeyan, A., Karthikeyan, S., Venkata Reddy, B. 2011. Inhibitory effect of caffeic acid
on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol. Cell. Biochem.,
38. Weng, C.J., Yen, G.C. 2012. Chemopreventive effects of dietary phytochemicals against cancer invasion and
metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev., 38(1):76–87.
39. Yang, J.S., Liu, C.W., Ma, Y.S., Weng, S.W., Tang, N.Y., Wu, S.H., Ji, B.C., Ma, C.Y., Ko, Y.C., Funayama, S.,
Kuo, C.L. 2012. Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase- and
mitochondria-dependent pathways. In Vivo (Brooklyn), 26(91):971–978.
40. Puangpraphant, S., De Mejia, E.G. 2009. Saponins in yerba mate tea (Ilex paraguariensis A. St.-Hil) and quercetin
synergistically inhibit iNOS and COX-2 in lipopolysaccharide-induced macrophages through NFkappa B
pathways. J. Agric. Food Chem. 57(19):8873–8883.
41. Liu, R.H. 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr.,
42. Rodriguez-Casado, A. 2014. The Health Potential of Fruits and Vegetables Phytochemicals: Notable Examples.
Crit. Rev. Food Sci. Nutr., 56(7):1097–1107.