Why modulated electrohyperthermia (mEHT) destroys the rouleaux formation of erythrocytes?

Authors

  • Henning Saupe
  • Gyula Peter Szigeti
  • Gabor Andocs

DOI:

https://doi.org/10.24297/jab.v9i3.1450

Keywords:

oncothermia, rouleaux formation, erythrocytes, electric field, electrophoretic force, disaggregation, mice, human

Abstract

Our aim in this paper is to describe systemic observations of blood samples before and after modulated electrohyperthermia (mEHT) treatment, to clarify its systemic effect on blood. The method is also feasible to control the efficacy of the mEHT treatment process.

Downloads

Download data is not yet available.

Author Biographies

Henning Saupe

Arkadia-Parxisklinik, Bad Emstal

Gyula Peter Szigeti

Institute of Human Physiology and Clinical Experimental Research, Semmelweis University

Gabor Andocs

Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama 930-0194

References

[ ] Courant, R. 1950. Dirichlet’s principle, conformal mapping and minimal surfaces. New York, Interscience Publ. Inc.
[ ] Popel, A.S., Johnson, P.C., Kameneva, M.V., and Wild, M.A. 1994. Capacity for red blood cell aggregation is higher in athletic mammalian species than sedentary species. J. Appl. Physiol. 77:1790–1794.
[ ] Baskurt, O.K., Meilselman, H.J., and Kayar E. 1998. Measurement of red blood cell aggregation in a “plate-plate” shearing system by analysis of light transmission. Clin. Hemorheol. Microcirc. 19:307–314.
[ ] Chien, S., and Jan, K-M. 1973. Ultrastructural basis of the mechanism of rouleaux formation. Microvascular Res. 5:155–166.
[ ] Ben, A. R., Barshtein, G., Zeltser, D., Goldberg, Y., Shapira, I., Roth, A., Keren, G., Miller, H., Prochorov, V., Eldor, A., Berliner, S., and Yedgar, S. 2001. Parameters of red blood cell aggregation as correlates of the inflammatory state. Am. J. Physiol. Heart Circ. Physiol. 280:H1982–H1988.
[ ] Bingham, E.C. 1916. An investigation of the laws of plastic flow. U.S. Bureau of Standards Bulletin. 13:309–353.
[ ] Bishop, J.J., et. al. 2001. Rheology effects of red blood cell aggregation in the venous network: a review of recent studies. Biorheology. 38:263–274.
[ ] Nouar, C., and Bottaro, A. 2010. Stability of the flow of a Bingham fluid in a channel: eigenvalue sensitivity, minimal defects and scaling laws of transition. J. Fluid Mech. 642:349–372.
[ ] Faitelson, A., and Jakobsons, E.E. 2003. Aggregation of erythrocytes into columnar structure (“rouleaux”) and the rheology of blood. J Eng. Phys. Thermophys. 76:728–742.
[ ] Pinkowski, A., and Lilienblum, W. 2015. A Hydrodynamic Approach to Cancer. Technische Mechanik (ISSN 0232-3869). doi: http://dx.doi.org/10.1101/014696.
[ ] Samsel, R.W., and Perelson, A.S. 1982. Kinetics of rouleau formation, I. A mass action approach with geometric features. Biophys. J., Biophysical Society. 37:493–514.
[ ] Samsel, R.W., and Perelson, A.S. 1984. Kinetics of rouleau formation, II. Reversible reactions. Biophys. J., Biophysical Society. 45:805–824.
[ ] Skalak, R., Zarda, P.R., Jan, K.M., and Chien, S. 1981. Mechanics of rouleau formation. Biophys J Biphysical Society 35:771–781
[ ] Derganc, Bozic, B., Svetina, S., and Zeka, B. 2003. Equilibrium shapes of erythrocytes in rouleau formation. Biophys. J. 84:1486–1492.
[ ] Brust, M., Aouane, O., Thiebaud, M., et.al. 2014. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific Rep. 4:4348, doi: 10.1038/srep04348.
[ ] Bäumler, H., Schürer, B., and Distler, J. 1987. Rouleau formation of erytrocytes is influenced by thrombocytes. Folia Haernatol. Int. Mag. Klin. Morphol. Blutforsch. 114:478–479.
[ ] Wagner, C., Steffen, P., and Svetina, S. 2013. Aggregation of red blood cells: from rouleaux to clot formation. Comptes. Rendus. Physique. 14:459–469.
[ ] Ami, R.B., Barshtein, G., Zeltser, D., Goldberg, Y., Shapira, I., Roth, A., Keren, G., Miller, H., Prochorov, V., Eldor, A., Berliner, S., and Yedgar, S. 2001. Parameters of red blood cell aggregation as correlates of the inflammatory state. Am. J. Physiol. Heart. Circ. Physiol. 280:H1982–H1988.
[ ] Fernandes, H.P., Cesar, C.L., and de Lourdes, Barjas-Castro M. 2011. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev. Bras. Hematol. Hemoter. 33:297–301.
[ ] Szasz, A. 2013. Challenges and Solutions in Oncological Hyperthermia. Thermal Med. 29:1–23.
[ ] Szasz, A. 2014. Oncothermia: complex therapy by EM and fractal physiology. IEEE General Assembly and Scientific Symposium (URSI GASS). XXIth URSI, 16–23 August. Beijing, China pp. 1–4. IEEE. 10.1109/URSIGASS.2014.6930100.
[ ] Andocs, G., Rehman, M.U., Zhao, Q.L., Papp, E., Kondo, T., and Szasz, A. 2015. Nanoheating without artificial nanoparticles, part II. Experimental support of the nanoheating concept of the modulated electro-hyperthermia method, using U937 cell suspension model. Biol. and Med. 7:1–9.
[ ] Ramirez, A., Zehe, A., and Starostenko, O. 2003. Dielectrophoretic field-fractionation of rouleaux formed of human erythrocytes: a feasibility study. Rev. Mexicana de Ing. Bioméd. 1:14–22.
[ ] Steffen, P., Verdier, C., and Wagner, C. 2013. Quantification of depletion-induced adhesion of red blood cells. Phys. Rev. Lett. 110:018102.
[ ] Irimajiri, A., Ando, M., Matsuoka, R., Ichinowatari, T., and Takeuchi, S. 1996. Dielectric monitoring of rouleaux formation in human whole blood: a feasibility study. Biochimica et Biophysica Acta. 1290:207–209.

Downloads

Published

2016-11-16

How to Cite

Saupe, H., Szigeti, G. P., & Andocs, G. (2016). Why modulated electrohyperthermia (mEHT) destroys the rouleaux formation of erythrocytes?. JOURNAL OF ADVANCES IN BIOLOGY, 9(3), 1948–1955. https://doi.org/10.24297/jab.v9i3.1450

Issue

Section

Articles

Most read articles by the same author(s)