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Abstract 

This paper reviews recently proposed overlapping co-clustering approaches and related evaluation measures. 

An overlap captures multiple views of the partitions in data set, hence is more expressive than traditional flat 

partitioning approaches. We present a graph-theoretic formulation of co-clustering, which allows nodes to 

possess multiple memberships and hence finds usage in diverse applications like text mining, web mining, 

collaborative filtering, and community detection. We also study proposed quality measures specifically adjusted 

to overlapping scenarios.particular subject.  
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1 Introduction 

When dealing with systems and networks of large size and complexity, clusters provide a natural summarization 

of the underlying system. The size and dimensionality of data generated has shown rapid growth, due to 

popularity of internet and social media. Although clustering is not a new data mining technique, this rise in 

volume and variety of data has made it more relevant than ever before. Clusters may be groups of frequently 

interacting individuals in social networks [1], [2], sets of web pages dealing with similar topics [3], [4], groups of 

genes having similar expression profiles [5], [6]. Most of such clustering applications are identified by occurrence 

of frequent overlaps among the discovered groups. This property is in effect due to inherent multiple 

memberships of the nodes forming the clusters. Thus traditional partition-based approaches to clustering fail 

to mine such multiplicity of representation. In this paper, we review some of the recently proposed approaches 

to overlapping co-clustering. This shift in paradigm also calls for required modification in traditional quality 

measures used for flat partitioning. We present in later sections, the measures adjusted to the overlapping case.   

Since distance metric is inversely proportional to similarity metric, from now, onwards we will use the term 

Similarity Metric. One popular similarity metric that is used for comparing categorical data, is Jaccard Index. 

Given two sets S and T, Jaccard Similarity is defined as: 

𝕁(𝑆, 𝑇) =  
|𝑆 ∩ 𝑇|

|𝑆 ∪ 𝑇|
 

However, this metric renders the running cost of any algorithm prohibitively expensive due to two limitations: 

• High-dimensionality of samples 

• The large number of sample-pairs to compare, nC2 

As dimensionality increases, the probability of occurrence of common features between samples decreases, 

making it difficult to ascertain similarity. This phenomenon is called curse of dimensionality [7]. To solve this 
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problem, randomized dimensionality reduction techniques like Minwise Hashing (MH) [8] and Weighted 

Minwise Sampling (WMS) [9] have been recently proposed in the literature. These techniques probabilistically 

reduce the dimension of samples from thousands to a small number, say K, while preserving the Jaccard 

similarity among samples. 

Even if dimensions are reduced to a smaller number K, the large number of samples make the comparison task 

computationally expensive. A general approach to handle this task is Locality-Sensitive Hashing (LSH) [10]. The 

theory of LSH states that given the hash (MH or WMS) h(x) of the sample x, for any pair of samples x and y, the 

probability of hash collision is given by: 

Pr(ℎ(𝑥) = ℎ(𝑦)) = 𝕁(𝑥, 𝑦) 

This approach of comparing samples uses hash-table and is linear in number of samples, hence avoids nC2 

number of comparisons.  

2  Co-clustering 

Co-clustering (also known as bi-clustering) is a natural evolution of the subspace clustering paradigm. It 

simultaneously clusters the rows (objects) and columns (attributes) of a dataset. Unlike traditional single-mode 

clusters, co-clusters correspond to arbitrary subspaces of objects and attributes, shown below as rectangles:   

For sparse high-dimensional data, like in word-document data [11], co-clustering is more effective than single-

mode clustering because it does not group objects based on global correlation as groups of objects are present 

in lower subspaces. Co-clustering is equivalent to implicit and adaptive dimensionality reduction and noise 

removal (irrelevant dimensions removal) leading to better clustering results [12] because the objects (features) 

get described by feature-clusters (object-clusters) rather than just features (objects).   

2.1  Graph-theoretic Formulation 

Co-clustering finds application in diverse set of problems such as text mining [11], [13], collaborative filtering 

[14] and community detection [1], [2]. These problem areas are identified by information presented in form of 

categorical data. In categorical data, samples are usually described by presence or absence of some features, 

forming a binary/categorical feature vector corresponding to each sample. This type of data can be expressed 

by a sparse matrix.  Formally, given a set O of objects and the set F of features, with |O| = n & |F| = m, a co-

cluster C is a triple (O’, F’, R), with O’ ⊆ O, F’ ⊆ F & R ⊆ O × F that can be described as 

𝐶(𝑂’, 𝐹, ’ 𝑅)  =  { 𝑂’ × 𝐹’ | 𝑜 ∈ 𝑂’, 𝑓 ∈ 𝐹’, (𝑜, 𝑓) ∈ 𝑅}           (1) 

Figure 0-1 Co-clusters 
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Here O’ and F’ are object clusters and feature clusters, respectively and relation R defines the structural type of 

co-cluster (binary connectivity in case of binary data) connecting object o and feature f co-occurring in the co-

cluster. Notice that augmenting the relation R extends the traditional similarity-based clustering to a more 

general and flexible “pattern-based framework”. In the simplest case of binary data, this connectivity information 

R between two disjoint sets (objects & features) can be modelled by the edge-connectivity between type-O and 

type-F nodes of the corresponding bipartite graph. Given an undirected unweighted bipartite graph along with 

its edge-connectivity information in the form of binary adjacency matrix Dn×m with n number of type-O nodes 

and m number of type-F nodes, a co-clustering solution aims to find cluster-pairs (O’, F’) of subset nodes such 

that every node-pair (o, f) exists in R, i.e., is edge-connected. 

Notice that the above formulation does not restrict an object o or feature f from subscribing to more than one 

clusters. This leverages the possibility to represent multiple memberships as overlapping groups. Other 

alternative formulations such as (k, l)-Co-clustering which seek to partition the data into k object-clusters and l 

feature-clusters, as such fail to detect overlapping groups. In this paper, we specifically focus on co-clustering 

approaches following the formulation given in Eq. 1.   

3  Overlapping Approaches to Co-clustering 

In this section, we review overlapping co-clustering algorithms proposed in literature, which span into different 

fields like text mining, web mining, community detection, etc. Most of the algorithms base their formulation 

from Eq. 1.   

3.1  Scalable Overlapping Co-clustering of Word-Document Data 

In this paper [11], the author has proposed a scalable co-clustering algorithm based on Locality-Sensitive 

Hashing technique [10] to find co-clusters of words and documents. Following steps summarize the complete 

algorithm in brief: 

• In the first step, objects are hashed to n possible co-clusters such that objects having at least p features 

in common are assigned the same hash-key. Objects having same hash-key form a candidate cluster. 

• In the second step, for each candidate co-cluster, a feature that is associated to a minimum fraction of 

co-cluster’s objects is inserted in an iterative manner. 

• In final step, for each feature-set in candidate co-cluster, a document that contains all features is 

associated to the candidate co-cluster, leading to almost complete binary connectivity within each co-

cluster. 

• Since the algorithm experimentally leads to thousands of distinct co-clusters, a graph-partitioning 

routine kMETIS [15] is used to partition the corresponding graph into k different clusters. 

Though the proposed algorithm is scalable, it does not guarantee 100% coverage of entire dataset, i.e. some 

objects or features may not belong to any of the discovered co-clusters. 

3.2  An Effective Approach on Overlapping Structures Discovery for Co-clustering 

In this paper [16], authors proposed a novel overlapping pattern search (OPS) strategy based on discriminative 

feature (object) set identification, given a non-overlapping partition of the data matrix. A discriminative feature 

function is defined which evaluates the contribution of a column-cluster in distinguishing given row-cluster from 

other row-clusters, based on difference of density between co-occurring block and average density of all blocks 

in the corresponding column group. Symmetrically, discriminative object function evaluates the contribution of 

a row-cluster in distinguishing given column-cluster from other column-clusters. Given a row-cluster (column-

cluster) to be discriminated, the set of column-clusters (row-clusters) for which discriminative feature (object) 
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function is greater than zero is called Discriminative Feature Set (Discriminative Object Set) of that distinguished 

row-cluster (column-cluster). 

The OPS strategy is then applied in the following manner: 

• In the first step, a partition-based co-clustering like [17], [18] is applied on data matrix to obtain non-

overlapping partitions in the form of row-clusters and column-clusters. 

• For each row r of data matrix and each row-cluster I not containing r, if fraction of I’s features, shared by 

r, is more than a user-specified threshold α, then r is added to the co-cluster I. 

• For each column c of data matrix and each column-cluster J not containing r, if fraction of J’s objects, 

shared by r, is more than a user-specified threshold β, then c is added to the co-cluster J. 

Though the algorithm successfully discovers inherent overlaps among objects and features, it is computationally 

expensive because of element-wise comparisons, hence doesn’t scale for large data sets.   

3.3  A Hash-based Co-clustering Algorithm for Categorical Data 

In this approach [13], the author relaxes the constraint in Eq. 1 to maximize the number of elements within the 

co-clusters, reformulating it as: 

𝐶(𝑂’, 𝐹’, 𝑅) =  { 𝑂’ × 𝐹’ |𝑜 ∈ 𝑂’, 𝑓 ∈ 𝐹’, |𝑅′| ≥ 𝜌 . |𝑂′ × 𝐹′| }            (2) 

where the fraction ρ accounts for tolerable sparsity of features/objects within a co-cluster. 

The steps of proposed algorithm are highlighted as following: 

• In the first step, data is optionally pre-processed to remove features more frequent than given threshold. 

• Then initial set of seed clusters are obtained by applying LSH technique [10] for Jaccard distance. 

• For each seed co-cluster, the new dataset is derived at, which contains union of feature-set of each 

object and union of object-set of each feature. 

• Next, the InClose [19] algorithm is applied to obtain set of co-clusters containing at least a minimum 

number of features and objects. 

• For each generated co-cluster, objects and features are inserted into co-cluster so that sparsity is not 

more than ρ, as per Eq. 2. 

• In the last step, co-clusters sharing exactly the same feature-sets are merged. 

3.4 Trawling the Web for emerging Cyber-communities 

Community discovery in networks requires representation of the interaction among same kinds of entities. 

Mathematically, this translates to an undirected unweighted bipartite graph with square adjacency matrix Dn×n 

such that |O| = n & |F| = n. Since O = F, ideally only upper triangular matrix is sufficient for analysis. Discovering 

communities in this setting translates to discovering the sets of nodes in the corresponding bipartite graph that 

show complete binary connectivity, i.e., completely connected subgraphs or bicliques. Again, this formulation 

does not prohibits the subgraphs to overlap. For practical purposes, a dense subgraph with density greater than 

user-specified threshold can be used as a community candidate 
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In this approach [20], the authors base their algorithm on the hypothesis that websites that should be part of 

the same community are frequently co-cited. Web-community is represented as dense directed bipartite graph 

with each directed edge representing citation-link from the source page (citing the target page) to the target 

page (being cited by the source page). 

The authors exploit these co-citations in the web-graph to extract initially all overlapping completely-connected 

subgraphs. In later stage, these subgraphs are expanded by inserting near-neighbour nodes. Steps followed in 

Trawling are summarized as follows: 

• As pre-processing step, pages that are unusually highly referenced on the Web are deleted (e.g., 

Yahoo!) 

• An inclusion-exclusion strategy is adopted, in which at every step, either a page is eliminated from the 

contention or an (i, j)-constrained biclique is reported, assuring useful progress at every step (either 

detect a community or prune the data). 

• For each point x ∉ ct, it is added to the community ct if it is edge-connected to at least minimum 

fraction of nodes in the community ct. 

• Since web crawl data is very big, the algorithm requires to be executable in a small number of steps. 

Where in each step, data is processed as a stream from disk and then stored back after processing. 

4  Evaluation Measures 

Two commonly used measures for comparing two clustering partitions are Normalized Mutual Information 

(NMI) [21] and F-measure [22]. Given two partitions X and Y of the data matrix, the NMI score Inorm(X: Y) is defined 

as: 

𝐼𝑛𝑜𝑟𝑚(𝑋 ∶ 𝑌) =  
𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)

(𝐻(𝑋) + 𝐻(𝑌))/2
 

where H(X) is the entropy of random variable X associated with partition X and H(Y) is the entropy of random 

variable Y associated with partition Y, whereas H(X, Y) is the joint entropy. NMI equals 1 when both partitions X 

and Y coincide.  

However, this definition does not extends to the case where clusters in the partition overlap with one another. 

For comparing partitions with overlapping classes/clusters, an extention of NMI has been proposed in [23], 

according to which, 

𝑁𝑀𝐼(𝑋, 𝑌) = 1 − 
1

2
[𝐻(𝑋|𝑌)𝑛𝑜𝑟𝑚  +  𝐻(𝑌|𝑋)𝑛𝑜𝑟𝑚] 

where                      

𝐻(𝑋|𝑌)𝑛𝑜𝑟𝑚  =  
1

𝐶𝑋

∑
𝑚𝑖𝑛𝑙∈{1,2,…|𝐶𝑌|} 𝐻(𝑋𝑘|𝑌𝑙)

𝐻(𝑋𝑘)
𝑘

 

and 

𝐻(𝑌|𝑋)𝑛𝑜𝑟𝑚 =  
1

𝐶𝑌

∑
𝑚𝑖𝑛𝑙∈{1,2,,,|𝐶𝑋|} 𝐻(𝑌𝑘|𝑋𝑙)

𝐻(𝑌𝑘)
𝑘

 

Here, H(X|Y) and H(Y|X) are conditional entropies respectively and |CX| and |CY| are the number of clusters/classes 

in partitions X and Y respectively.   
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F-measure is defined as the harmonic mean of Precision and Recall, where precision is the fraction of objects in 

the cluster that share the same class and recall is the fraction of objects in the class that share the same cluster. 

However, precision and recall lose their meaning in the overlapping setting because multiple-memberships of 

objects lead to ambiguity. A work around this problem has been used in the form of pairwise precision and 

pairwise recall in [24], [25].  

• Pairwise Precision: fraction of object pairs co-occurring in the same cluster that also share at least one 

class. 

• Pairwise Recall: fraction of object pairs that sharing at least one class that also co-occur in the same cluster 

F-measure is then defined as: 

𝐹 =  
2 × 𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑅𝑒𝑐𝑎𝑙𝑙
 

5  Conclusions 

In this paper, we reviewed the overlapping co-clustering formulations for categorical data. We saw that often in 

practice, the constraints cannot be strict and require to be relaxed by introducing density or sparsity throttles. 

Overlapping co-clustering translates to finding bicliques when dealing with community detection in networks. 

Quality measures like NMI and F-measure cannot be directly applied to overlapping cases. Modifications to 

these measures need to consider the sharing of more than one classes by the objects. This review helps foster 

the learning of essential ingredients required to design a scalable overlapping co-clustering algorithm. 
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