
International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7470

DOI: https://doi.org/10.24297/ijct.v19i0.8123

Model-Based Parallelizer for Embedded Control Systems on Single-ISA Heterogeneous Multicore

Processors

Zhaoqian Zhong1, Masato Edahiro2

1Ph.D. candidate, Graduate School of Information Science, Nagoya University

2Professor, Graduate School of Informatics, Nagoya University

zhaoqian@ertl.jp

Abstract

This paper presents a model-based parallelization approach to parallelize embedded systems on single-ISA

heterogeneous multicore processors, especially processors with ARM big.LITTLE architecture, wherein the core

assignment of the Simulink blocks is determined based on the control design constraints and characteristics of

ARM big.LITTLE architecture. The proposed approach uses a hierarchical clustering method on Simulink blocks

to reduce the problem scale, and an integer linear programming formulation to determine the core assignment

solution, considering load balancing and minimization of the inter-core communication across cores with

different performances. Finally, we generate the parallel code of the model based on the core assignment

solution for execution on the processors. We evaluate the proposed approach by comparing it with existing

methods and generating the parallel code on a single-board computer with ARM big.LITTLE architecture to

determine its effectiveness.

Keywords: Single-ISA Heterogeneous Multicore Processor, ARM Big.LITTLE Architecture, Model-Based

Development, MATLAB Simulink, Parallelization

1. Introduction

With the evolution of more complex embedded control systems, such as automotive control systems, model-

based development (MBD) with platforms such as MATLAB/Simulink [1] is becoming increasingly common in

recent years. A Simulink model is a brief and descriptive block diagram that can be automatically translated to

a sequential source code for embedded implementation on single-core processors. On the other hand,

heterogeneous multicore processors of the single instruction set architecture (ISA) [2] have potential benefits

over homogeneous multicore processors. On a single-ISA heterogeneous multicore processor, cores may

execute the same instruction set. However, they offer different capabilities and performances, such as different

clock frequencies and power consumption. The combination of these heterogeneous cores may lead to better

application performance. To implement the control models described in Simulink on a single-ISA heterogeneous

multicore processor, the partition of the generated control software based on control design constraints, and

the parallelization of the software components based on the characteristics of single-ISA heterogeneous

multicore processors for parallel execution is necessary.

In this paper, a model-based parallelization approach is proposed to parallelize embedded systems built in the

Simulink MBD environment on single-ISA heterogeneous multicore processors, especially those with ARM

big.LITTLE architecture [3]. In this approach, a hierarchical clustering method is proposed to group blocks of the

same attribute to top-level clusters. We then use an integer linear programming (ILP) formulation to assign

these clusters on heterogeneous cores for the lowest communication cost and proper load balance. Our

approach can also generate parallel codes based on the core assignment solution for execution on the

processor.

The contributions of our work are as follows.

• We utilize SHIM [4] to estimate the workload of Simulink blocks and evaluate target processors in our

approach. Hence, necessary parameters such as block execution time and signal line communication time

can be easily acquired without executing the models on the processor in advance.

https://doi.org/10.24297/ijct.v19i0.8123

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7471

• An available ILP formulation is proposed to parallelize the model, considering the minimization of the

communication cost, load balancing, and the characteristics of single-ISA heterogeneous multicore

processors.

• A new structure called a cluster is proposed in our work, where Simulink blocks are gathered based on user

configuration or identical attributes. Because building ILP formulations directly on Simulink blocks may lead

to a considerable number of ILP variables and constraints, and a rather long solver run-time in complex

models, using clusters can considerably reduce the problem scale, which makes the ILP computation much

faster in most cases.

• Our proposed approach also contains code generation and user feedback, where model designers can easily

implement their models for execution on the processor and comprehend the parallelization of the models

in the MBD environment.

2. Related Work

There is a large amount of research being done on parallelizing control models in MBD, which can roughly be

divided into code-level parallelization and model-level parallelization. For code-level parallelization, tools such

as MATLAB Coder [5] are commonly used to generate sequential C codes from models, followed by a parallel

compiler [6, 7] to parallelize the generated C codes. Code-level parallelization can provide higher parallel

performance owing to a more fine-grained parallelism than the parallelization at the block level. However, as

the generated sequential C codes discard some of the control information, it is difficult to parallelize the model

owing to control design constraints. In addition, it is difficult to extract block allocation results for user feedback

and model evaluation in code-level parallelization. Meanwhile, for model-level parallelization [8, 9, 11], the

extraction of block-level parallelism from models is common. These blocks are partitioned to the cores on the

processor. Simulink models can be seen as a block diagram or a dataflow graph, which consists of blocks that

represent different parts of a system, and signal lines that define the dependency between the blocks. The

model-level parallelization problem is to find the mapping and scheduling of block execution and signal line

communication that could minimize the execution time of the block diagram on the target architecture. The

mapping and scheduling of blocks are complex optimization problems, which need to be solved simultaneously

to maximize the utilization of each core. The communication time between different cores must also be taken

into account to solve this problem. In this case, linear programming (LP) introduces an appropriate solution to

solve such problems [9, 10, 11]. We can describe Simulink models and target processors in an LP formulation

and give it suitable constraints, followed by using LP solvers to solve the formulation for the optimal solution.

However, there may be a substantial number of Simulink blocks and signal lines in the complex control model.

Thus, the LP solver may run for a long time to solve the parallel problem on the blocks [9]. Therefore, it is

necessary to reduce the problem scale to obtain a proper solver time during the parallelization of a large-scale

model.

Furthermore, most of these existing studies target homogeneous multicore processors where all cores have the

same parameters. It is easier to parallelize a control model for homogeneous multicores because designers do

not have to consider the diversity of performance or power consumption, which are identical for all cores. A

balanced distribution of the workload is essential for a single-ISA heterogeneous multicore processor composed

of cores of varying performances and complexities to achieve high parallel performance [2]. Moreover, owing

to the diversity of the cores, the parallelization of blocks becomes a nonlinear problem. The workload and inter-

core communication time caused by signal lines may change when blocks are allocated on different cores.

Among the single-ISA heterogeneous multi-core architectures, we focus on ARM big.LITTLE architecture [3]

where cores are grouped by their parameters and they are homogeneous in all groups, except for the system

core, if it exists. On a multi-core processor with ARM big.LITTLE architecture, the cores are marked big or LITTLE

owing to their diversity. In this case, the inter-core communication can be described as a data transaction

behavior between the same type of cores, or between big and LITTLE cores, making parallelization a typical LP

problem. On a processor with ARM big.LITTLE architecture, we can describe this problem as minimizing the

communication time to reduce the time of execution of the whole model, while allocating blocks to big or LITTLE

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7472

cores according to their workload. Thus, it is possible to achieve a considerably higher parallel performance and

lower power consumption, as compared to using only homogeneous cores.

Fig. 1: Overview of model-level parallelization approach in MBD for multicore processor

Fig. 1 shows an overview of our proposed approach for model-level parallelization. It solves the model-level

parallelization problems for processors with ARM big.LITTLE architecture and generates static core assignment

solution of the Simulink models. Static core assignment, such as ILP [11] and graph partition [12, 13], is more

suitable for embedded control applications, as compared to dynamic task allocation. Static core assignment

does not need to run a task scheduler to determine the execution of blocks, which leads to a much smaller

overhead in the execution of the application. A copy of the input model where the blocks are colored owing to

the core assignment is generated as feedback to the model designers. With this graph, the model designers can

understand the partitioning of the input models on the target processor and improve the design of the input

control models.

3. Proposed Approach

In this section, we present an overview of our proposed parallelization approach, which combines the

characteristics of both control design and implementation design, to solve the parallelization problems for ARM

big.LITTLE architecture. Our approach consists of the four phases shown in Fig. 2. They are described in the

following subsections.

• Data Extraction: extract information from the input Simulink model and the target processor and generate

the necessary data file for parallelization.

• Hierarchical Clustering: group blocks according to user configuration and block attributes into high-level

clusters.

• Core Assignment: assignment of the clusters to cores with our ILP formulation.

• Code Generation: generate the parallel code according to the core assignment solution.

3.1 Data Extraction

Our proposed approach takes control models designed in MATLAB Simulink, the hardware description of the

target processor, and a user configuration file as the initial input. The user configuration file contains demands

from model designers regarding implementation, such as the specific cores on the processor to be utilized to

parallelize the input model, or whether some special Simulink blocks are preferred to be assigned to a specified

core. We utilize tools from SHIM (Software-Hardware Interface for Multi-Many-Core) [4] to evaluate the target

big.LITTLE heterogeneous multicore processors. SHIM is a hardware abstraction description standardized by

Multicore Association [14]. SHIM standardizes the interface between the multicore hardware and the software

tools. It can be used to describe performance information from the perspective of software design. SHIM

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7473

provides tools to roughly estimate software performance at the instruction level, which enables us to easily

understand the number of clock cycles required by an instruction to be executed on a specific core. In our

approach, we set the LITTLE core as the base core and use SHIM tools to generate a SHIM data file that obtains

some of the architectural characteristics such as clock cycles for instructions on the base core. We also need to

evaluate the processor for performance information such as the communication overhead between different

cores and the processing speed of the big and LITTLE cores.

Fig. 2 An overview of each phase in the proposed approach

We standardize a block-level structure XML file (BLXML file) to describe the Simulink model in the proposed

approach. The BLXML file mainly contains the following information, which is used in the next phase of our

approach:

• Block parameters such as control rate, functional module, data type, etc.

• Block dependency on other blocks.

• Initialization and execution code of each block.

• Estimated execution time of each block.

Block parameters can be obtained from the Simulink model file. Block dependency can be extracted from the

block diagram of the models. We generate a sequential C code of the input model with MATLAB Coder. The

initialization and execution code of each block can be obtained from the generated code file. The execution

time of each block can be estimated by combining block codes and instruction clock cycles in the SHIM data

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7474

file. Fig. 3 (a) shows a gain block in a Simulink model and Fig. 3 (b) is the code of the gain block in the BLXML

file.

(a) Gain block in a Simulink model

(b) Code of gain block in BLXML file

Fig. 3 A sample of Simulink block and BLXML file

3.2 Hierarchical Clustering

In this phase, we group the blocks of the Simulink models into clusters based on the characteristics of control

design on different levels to reduce the ILP problem scale.

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7475

Fig. 4 Grouping continuous blocks into a cluster

Firstly, we group the Simulink blocks that should be assigned to the same core according to user configuration.

This is followed by intentionally grouping some of the blocks and assigning them to the same core for design

and implementation optimization. Considering the point of view of model design, either If or Switch Case blocks

are used when the execution of some blocks is determined by a single input signal. The blocks present on the

branches between an If or Switch Case block and the corresponding Merge block can be grouped to avoid

branch selection. Considering the point of view of implementation, blocks such as Data Store Read blocks or

Data Store Write blocks are used to read or write values to the same memory, and it is advisable to group blocks

that are between a pair of Data Store Read block and Data Store Write block to reduce memory access.

Moreover, continuous blocks that have a direct connection and share the same attribute should be clustered.

For example, if two continuous blocks belong to the same functional module in the control design, they are

usually gathered to the same atomic subsystem in the model and should not be separated to different cores

during core assignment. In addition, if two blocks have a signal line between them and share the same rate

parameter, they have a similar iterative execution behavior and can be seen as a single unit during core

assignment. Fig. 4 shows an example of grouping continuous blocks with the same attributes into a cluster. We

do such clustering hierarchically. The final generated groups of blocks are called clusters in our approach. ILP is

a rigorous, yet heavy, method for the optimization problem. Therefore, parallelizing blocks directly may lead to

a substantial number of ILP variables and constraints. This could result in a rather long run-time to obtain the

optimal solution. Meanwhile, the utilization of clusters instead of blocks in ILP greatly reduces the complexity of

the ILP problem and the time taken by the solver. In actual scenarios, there are commonly several tens of clusters

that have the same control rate and belong to the same functional module in an automotive control model [15].

3.3 Core Assignment

In this phase, we assign clusters to cores on the target multicores. To define the model in the ILP formulation,

we first generate a cluster graph from the result of the hierarchical clustering and estimate the necessary data

from the BLXML file. We fit the forced core assignment according to the user configuration file and assign other

clusters to cores with our ILP formulation. This phase is extremely important in our proposed approach.

Therefore, we have provided more details about the proposed algorithm using ILP formulation in the next

section. We then expand the clusters to the Simulink blocks and assign the blocks to the cores on the target

processor. Our approach supports models with multiple control rates and action subsystems, where If or Switch

Case blocks are used, which makes it important to ensure that these Simulink blocks will be executed in the right

order, or a fatal error can occur in the code generation phase. We perform a path analysis on the block

dependency to determine the execution sequence of the blocks on each core. Finally, we generate a copy of the

input model where the blocks are colored according to the core assignment solution to feed back the

assignment of these blocks to the model designer.

3.4 Code Generation

In the last phase, we generate the parallel code of the input model from the core assignment solution and the

BLXML file. The generated code is implemented using POSIX Threads. Firstly, the block diagram of the input

model is translated into a graph based on the communicating sequential process (CSP) theory [16], owing to

the result of the path analysis where block dependency and execution order can be easily distinguished. We

create one thread for each core on the target processor and write the execution code of each block from the

BLXML file to these threads according to the core assignment solution and their execution order in the CSP

graph. Execution cores for threads are specified using pthread affinity.

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7476

4 ILP Formulation for Core Assignment

In this section, we present our ILP formulation for cluster-level core assignment on heterogeneous multicore

processors with ARM big.LITTLE architecture. Given the cluster graph, the user configuration, and the parameters

of the target processor, our ILP formulation discovers the optimal static core assignment solution, which aims

at minimizing the communication transactions between the cores to reduce the overall application execution

time. Our ILP formulation also distributes the workload of the clusters to each core owing to the characteristics

of ARM big.LITTLE architecture.

4.1 Architecture Definition

In our formulation, the user should specify which cores on the processor are used to parallelize the input model

in the user configuration file. The parallelization problem on heterogeneous multicore processors with ARM

big.LITTLE architecture is to find the mapping of clusters on the given cores. To solve this problem using linear

programming, we divide the target heterogeneous multicore processor into two levels: core groups and cores.

In our formulation, the cores in ARM big.LITTLE architecture are grouped into the big group and the LITTLE

group based on their performance. We evaluate some of the major tools in ARM big.LITTLE architecture, such

as Odroid-XU4 [17] and Jetson TX2 [18] and we observe that the communication overheads between two big

cores or two LITTLE cores always remain at a very close range, while the overhead between a big core and a

LITTLE core does the same. Therefore, in our ILP formulation, we assume that the inter-group overheads between

the cores of different core groups are the same, and the inter-core overhead in both the core groups is also the

same.

At the core group level, we define the set of two core groups as 𝐺𝑅𝑂𝑈𝑃 = {𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝𝑔|𝑔 ∈ [𝑏𝑖𝑔, 𝐿𝐼𝑇𝑇𝐿𝐸]}.

Each core group is defined as a three-tuple: 𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝𝑔 = (𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚𝑔, 𝑐𝑜𝑟𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑔 , 𝐶𝑂𝑅𝐸𝑔), where

𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚𝑔 represents the number of cores, 𝑐𝑜𝑟𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑔 denotes the overhead of communication,

and 𝐶𝑂𝑅𝐸𝑔 is the set of cores in 𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝𝑔 . We use the communication overhead between a big core and a

LITTLE core as the communication overhead between core groups, which is denoted by 𝑔𝑟𝑜𝑢𝑝_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑.

At the core level 𝐶𝑂𝑅𝐸𝑔 = {𝑐𝑜𝑟𝑒𝑝,𝑔|𝑝 ∈ [0, 𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚𝑔 − 1]} defines the set of cores in either core group.

A core is defined as a five-tuple: 𝑐𝑜𝑟𝑒𝑝,𝑔 = (𝑐𝑜𝑟𝑒_𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔, 𝑐𝑜𝑟𝑒_𝑢𝑡𝑖𝑙𝑝,𝑔, 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑𝑝,𝑔,

𝑐𝑜𝑟𝑒_𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔, 𝑐𝑜𝑟𝑒_𝑚𝑖𝑛_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔), where 𝑐𝑜𝑟𝑒_𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 represents the total workload of clusters

assigned to this core in the core assignment solution, 𝑐𝑜𝑟𝑒_𝑢𝑡𝑖𝑙 represents the utilization ratio of the core to be

used in our formulation, and 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑 represents the processing speed of this core. The value of 𝑐𝑜𝑟𝑒_𝑢𝑡𝑖𝑙 is

specified in the user configuration if factors such as operating system (OS) influence the utilization of the core,

and its default value is set to 1 where all of the core resources can be used. The value of 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑 should be

given in the user configuration or extracted from the evaluation on the real processor. To distribute the workload

to each core, we use 𝑐𝑜𝑟𝑒_𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔 and 𝑐𝑜𝑟𝑒_𝑚𝑖𝑛_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔 as the maximum and minimum of the

cluster workload assigned to 𝑐𝑜𝑟𝑒𝑝,𝑔. They are supposed to be taken from the user configuration file if the model

designer prefers to balance the block distribution. In this paper, we set 𝑐𝑜𝑟𝑒_𝑚𝑖𝑛_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 = 1 to ensure that all

of the cores are used and 𝑐𝑜𝑟𝑒_𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙/(∑ (∑ 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑𝑝,𝑔𝑝∈𝐶𝑂𝑅𝐸𝑔𝑔∈𝐺𝑅𝑂𝑈𝑃)) ∗ (1.05 +

𝑡), where 𝑡𝑜𝑡𝑎𝑙_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 denotes the sum of the estimated execution time of all the blocks and 𝑡 denotes a value

to avoid a non-optimal solution. It is possible that the constraint on 𝑐𝑜𝑟𝑒_𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 may not be satisfied and

the formulation may not be solved. Therefore, 𝑡 is used to increase the value of 𝑐𝑜𝑟𝑒_𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 if the

proposed ILP formulation fails to find any solution.

4.2 Model Definition

After hierarchical clustering, the input model is represented by a cluster graph, which is an acyclic directed graph

𝐺 = (𝐶𝐿𝑆𝑇, 𝐶𝑂𝑁𝑁), where 𝐶𝐿𝑆𝑇 is the set of clusters and 𝐶𝑂𝑁𝑁 is set of the communication edges between the

clusters.

The number of clusters is denoted by 𝑚 and the set of 𝑚 clusters is defined as 𝐶𝐿𝑆𝑇 = {𝑐𝑙𝑠𝑡𝑖|𝑖 ∈ [0, 𝑚 − 1]}.

Each cluster is defined as 𝑐𝑙𝑠𝑡𝑖 = (𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖), where 𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 is the estimated workload of the cluster

𝑐𝑙𝑠𝑡𝑖 . The estimated workload 𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 is calculated by the sum of estimated execution time and the control

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7477

rate of the blocks grouped to 𝑐𝑙𝑠𝑡𝑖 . The BLXML file helps us to find the estimated execution time and the control

rate parameter of the blocks. The sum of the estimated execution time shows the time taken to execute all

blocks in this cluster sequentially on the base core of the processor. The control rate parameter determines the

frequency of cluster execution in loop interactions. For example, a very low control rate shows that the blocks

in this cluster are not executed frequently. Thus, despite the large value of the sum of the estimated execution

time of the blocks in this cluster, the value of 𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 may still be very small. We find the cluster with the

lowest control rate 𝑐𝑙𝑠𝑡_𝑙𝑜𝑤𝑒𝑠𝑡_𝑟𝑎𝑡𝑒, and use 𝑐𝑙𝑠𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖 to denote the sum of estimated execution

time of the blocks grouped in 𝑐𝑙𝑠𝑡𝑖 and 𝑐𝑙𝑠𝑡_𝑟𝑎𝑡𝑒𝑖 to denote the control rate of the blocks grouped in 𝑐𝑙𝑠𝑡𝑖 .

Hence, the estimated workload of 𝑐𝑙𝑠𝑡𝑖 is defined as 𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 = 𝑐𝑙𝑠𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖 ∗ 𝑐𝑙𝑠𝑡_𝑟𝑎𝑡𝑒𝑖/

𝑐𝑙𝑠𝑡_𝑙𝑜𝑤𝑒𝑠𝑡_𝑟𝑎𝑡𝑒.

The number of communication edges is denoted by 𝑛. We define the set of 𝑛 communication edges as 𝐶𝑂𝑁𝑁 =

{𝑐𝑜𝑛𝑛𝑗|𝑗 ∈ [0, 𝑛 − 1]}. Each communication edge is defined as a three-tuple: 𝑐𝑜𝑛𝑛𝑗 = (𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 , 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 ,

𝑐𝑜𝑛𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑗), where 𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 and 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 represent the start cluster and termination cluster of the

communication edge 𝑐𝑜𝑛𝑛𝑗 , respectively, and 𝑐𝑜𝑛𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑗 is the estimated communication time of the

communication edge. A communication edge can be seen as a set of signal lines that start from blocks in

𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 and go to blocks in 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 . The 𝑐𝑜𝑛𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑗 is decided by the number of signal lines and

the control rates of 𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 and 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 . For example, a signal line from a block in 𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 to a

block in 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 indicates that the two clusters have a communication transaction, and the high control

rates of 𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 or 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 indicate the high frequency of communication transaction in loop

interactions, so a significantly higher value of 𝑐𝑜𝑛𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑗 should be set accordingly. In our formulation, the

value of 𝑐𝑜𝑛𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑗 is set to the product of the number signal lines between 𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 and 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 ,

and the higher of the control rate multiples of 𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 and 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 , to quantize the communication

behaviour of 𝑐𝑜𝑛𝑛𝑗 .

4.3 Variables

Following are the variables used in our ILP formulation to denote to which core group or core a cluster is

assigned:

• 𝑥_𝑔𝑟𝑜𝑢𝑝𝑖,𝑔: equals to 1 if cluster 𝑐𝑙𝑠𝑡𝑖 is assigned to core group 𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝𝑔, otherwise equals to 0.

• 𝑥_𝑐𝑜𝑟𝑒𝑖,𝑝,𝑔: equals to 1 if cluster 𝑐𝑙𝑠𝑡𝑖 is assigned to core 𝑐𝑜𝑟𝑒𝑝,𝑔 in core group 𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝𝑔, otherwise equals

to 0.

We also use the following variables in our ILP formulation to denote whether the start cluster and termination

cluster of a communication edge are assigned to the same core group or to the same core:

• 𝑦_𝑔𝑟𝑜𝑢𝑝𝑗 : equals to 0 if both end clusters, 𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 and 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 , of communication edge 𝑐𝑜𝑛𝑛𝑗 are

assigned to the same group, and equals to 1 otherwise.

• 𝑦_𝑐𝑜𝑟𝑒𝑗,𝑔: equals to 0 if both end clusters, 𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗 and 𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗 , of communication edge 𝑐𝑜𝑛𝑛𝑗 are

assigned to the same core in group 𝑐𝑜𝑟𝑒_𝑔𝑟𝑜𝑢𝑝𝑔, and equals to 1 otherwise.

4.4 Objective Function

Our proposed ILP formulation assigns clusters to the specified cores on a heterogeneous multicore processor

with ARM big.LITTLE architecture. For all communication edges, 𝑐𝑜𝑛𝑛𝑗 , whose 𝑦_𝑔𝑟𝑜𝑢𝑝𝑗 = 1 or 𝑦_𝑐𝑜𝑟𝑒𝑗,𝑔 = 1, we

use the product of 𝑐𝑜𝑛𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑗 and the corresponding overhead as the communication cost of 𝑐𝑜𝑛𝑛𝑗 . The sum

of all these communication costs represents the communication cost of the whole application and we can

minimize this cost to reduce the number of communication edges as well as the communication time between

the cores. The objective function for the core assignment problem is as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑜𝑛𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑗 ∗ (𝑦_𝑔𝑟𝑜𝑢𝑝𝑗 ∗ 𝑔𝑟𝑜𝑢𝑝_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + ∑ 𝑦_𝑐𝑜𝑟𝑒𝑗,𝑔 ∗

𝑔∈𝐺𝑅𝑂𝑈𝑃

𝑐𝑜𝑟𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑔)

𝑗∈𝐶𝑂𝑁𝑁

4.5 Constraints

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7478

The constraints for the core assignment problem are defined as follows.

• Each cluster shall be assigned to only one core group:

∀𝑖 ∈ 𝐶𝐿𝑆𝑇: ∑ 𝑥_𝑔𝑟𝑜𝑢𝑝𝑖,𝑔

𝑔∈𝐺𝑅𝑂𝑈𝑃

= 1 (1)

• Each cluster shall be assigned to only one core on the processor:

∀𝑖 ∈ 𝐶𝐿𝑆𝑇: ∀𝑔 ∈ 𝐺𝑅𝑂𝑈𝑃: ∑ 𝑥_𝑐𝑜𝑟𝑒𝑖,𝑝,𝑔

𝑝∈𝐶𝑂𝑅𝐸𝑔

= 𝑥_𝑔𝑟𝑜𝑢𝑝𝑖,𝑔 (2)

• Whether the two end clusters of a communication edge are assigned on the same core group is checked by

the following calculation:

∀𝑗 ∈ 𝐶𝑂𝑁𝑁: 𝑦_𝑔𝑟𝑜𝑢𝑝𝑗 = (∑ 𝑎𝑏𝑠

𝑔∈𝐺𝑅𝑂𝑈𝑃

(𝑥_𝑔𝑟𝑜𝑢𝑝𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗,𝑔 − 𝑥_𝑔𝑟𝑜𝑢𝑝𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗,𝑔))/2 (3)

• Whether the start cluster and termination cluster of a communication edge are assigned on the same core

is checked by the following calculation:

∀𝑗 ∈ 𝐶𝑂𝑁𝑁: ∀𝑔 ∈ 𝐺𝑅𝑂𝑈𝑃: 𝑦_𝑐𝑜𝑟𝑒𝑗,𝑔 = ⌊(∑ 𝑎𝑏𝑠

𝑝∈𝐶𝑂𝑅𝐸𝑔

(𝑥_𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑛_𝑡_𝑐𝑙𝑠𝑡𝑗,𝑝,𝑔 − 𝑥_𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑛_𝑠_𝑐𝑙𝑠𝑡𝑗,𝑝,𝑔))/2⌋

(4)

• The sum of workload of clusters assigned to each core of different processing speed is calculated as follows:

∀𝑔 ∈ 𝐺𝑅𝑂𝑈𝑃: 𝑝 ∈ 𝐶𝑂𝑅𝐸𝑔: 𝑐𝑜𝑟𝑒_𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔 = ∑ 𝑥_𝑐𝑜𝑟𝑒𝑖,𝑝,𝑔 ∗ 𝑐𝑜𝑟𝑒_𝑢𝑡𝑖𝑙𝑝,𝑔/ 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑𝑝,𝑔

𝑖∈𝐶𝐿𝑆𝑇

 (5)

• The sum of workload of clusters assigned to a core shall not exceed its upper limit and it is calculated as

follows:

∀𝑔 ∈ 𝐺𝑅𝑂𝑈𝑃: 𝑝 ∈ 𝐶𝑂𝑅𝐸𝑔: 𝑐𝑜𝑟𝑒_𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔 ≤ 𝑐𝑜𝑟𝑒_𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔 (6)

• The sum of workload of clusters assigned to a core shall not exceed its lower limit and it is calculated as

follows:

∀𝑔 ∈ 𝐺𝑅𝑂𝑈𝑃: 𝑝 ∈ 𝐶𝑂𝑅𝐸𝑔: 𝑐𝑜𝑟𝑒_𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔 ≥ 𝑐𝑜𝑟𝑒_𝑚𝑖𝑛_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑝,𝑔 (7)

5 Experiments

To study the scalability and efficiency of our method with the ILP formulation, we use randomly generated

cluster graphs with different number of clusters. Furthermore, we parallelize an automotive control evaluation

model based on real scenarios with our approach and execute the parallel code on ODROID XU4 single-board

computer. Among a variety of ILP solvers, we use IBM ILOG CPLEX Optimization Studio [19] to solve the core

assignment problem. The upper time limit of CPLEX execution is acceptably set to 5 hours (18,000 seconds),

even though it takes only a few minutes to find the solution for our formulation of 100 clusters. The proposed

approach and the CPLEX solver are executed on a PC with an Intel Xeon CPU E5-2695v2 2.40 GHz, in which the

cache size is 30720 kB and the main memory size is 32 GB.

5.1 Randomly Generated Cluster Graphs

We use randomly generated directed acyclic graphs of clusters to evaluate the performance of the ILP

formulation for the assignment of cores. Ideally, we should use data from real control models but gathering

reasonable models is not easy. The artificial generation of well-controlled models is also difficult. Hence, we use

randomly generated directed acyclic graphs, such as input cluster graphs, whose parameters, such as cluster

estimated workload and communication time, are generated randomly. The range of these parameters are based

on real-scenario models.

In these experiments, we generate 100 cluster graphs of each specified cluster number, followed by using our

ILP formulation and a graph partition method called khmetis [20] for core assignment solutions. khmetis is a

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7479

program provided by hMETIS [21]. It computes a k-way partitioning using multilevel k-way partitioning. hMETIS

is commonly used to solve problems such as task allocation for multicores [8]. As khmetis uses random seeds

to generate graph partitions, we execute khmetis 100 times with different execution parameters and use the

partition with the lowest communication cost as the core assignment result in our experiments. We assume a

big.LITTLE heterogeneous multicore system as the target processor, where the 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑 of big cores is 3 times

higher than the 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑 of LITTLE cores and the 𝑔𝑟𝑜𝑢𝑝_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 is 5 times higher than the 𝑐𝑜𝑟𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑.

We use a user configuration of one big core and one LITTLE core, and another of two big cores and four LITTLE

cores in our experiments.

Table 1. Core assignment on randomly generated cluster graphs for one big and one LITTLE cores.

Cluster number Approach Average solver time Average speedup Average load balance

20
proposed 0.13 2.88 1.90

khmetis 1.51 1.65 1.37

30
proposed 0.22 3.23 1.91

khmetis 3.66 1.74 1.34

40
proposed 0.19 3.34 1.90

khmetis 6.55 1.76 1.33

50
proposed 0.13 3.44 1.89

khmetis 10.26 1.78 1.33

60
proposed 0.32 3.50 1.88

khmetis 14.60 1.78 1.33

70
proposed 0.32 3.52 1.86

khmetis 19.66 1.76 1.32

80
proposed 0.31 3.57 1.87

khmetis 25.37 1.78 1.32

90
proposed 0.46 3.56 1.86

khmetis 31.75 1.75 1.31

100
proposed 0.60 3.56 1.86

khmetis 38.99 1.81 1.34

We present metrics on the core assignment results of randomly generated cluster graphs in Table 1 and 2. The

average solver time denotes the average execution time required by our ILP formulation and khmetis to solve

core assignment problems of different sizes. Average speedup metric is the ratio between the sequential

execution time and the parallel execution time at the cluster level. Here, we use the sum of the workload of the

sequential execution time of all clusters. The parallel execution time is the total execution time computed by the

core assignment result and the dependency of these clusters. The average load balance metric is the ratio

between the sequential execution time and the highest 𝑐𝑜𝑟𝑒_𝑐𝑙𝑠𝑡_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙. It indicates the efficiency of core

utilization. For a small number of clusters and cores, our ILP formulation executes much faster than khmetis to

obtain the solution. However, when the number of clusters and cores increase, the solver time to solve the core

assignment problem in ILP may become much longer, while still remaining within the acceptable upper time

limit. The existing method, khmetis, cannot properly balance the weights of partitions on heterogeneous

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7480

architectures. It fails to parallelize these clusters and cannot use cores more efficiently with respect to the

speedup and load balance, as compared to ILP. However, for a smaller number of clusters on six cores, the ILP

formulation may generate solutions of lower speedup and load balance, as compared to a larger number of

clusters. We set the upper limit of cluster workload on each core, which makes it difficult to distribute the cluster

workload evenly in a scenario where the number of clusters is small, but the workload of most clusters is large.

In such cases, we raise the upper limit on the cores to generate a legal solution of poor workload balance where

the heaviest clusters are assigned to big cores. Additionally, we use 𝑐𝑜𝑟𝑒_𝑚𝑖𝑛_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 as the lower limit of

workload on each core in the ILP formulation to utilize each core. However, this action may lead to too many

communication transactions between the cores for a small number of clusters, thereby increasing the whole

application execution time.

Table 2. Core assignment on randomly generated cluster graphs for two big and four LITTLE cores.

Cluster number Approach Average solver time Average speedup Average load balance

20
proposed 14.14 3.01 3.52

khmetis 36.97 1.82 3.19

30
proposed 1.88 4.25 4.72

khmetis 40.54 2.96 3.70

40
proposed 8.30 5.16 5.38

khmetis 45.17 3.89 4.09

50
proposed 9.94 6.16 5.56

khmetis 50.61 4.42 4.20

60
proposed 22.07 6.67 5.60

khmetis 57.93 4.59 4.27

70
proposed 54.2 6.91 5.61

khmetis 66.09 4.77 4.34

80
proposed 89.23 6.91 5.60

khmetis 75.77 4.70 4.37

90
proposed 214.58 7.15 5.6

khmetis 89.86 4.74 4.37

100
proposed 462.91 7.03 5.59

khmetis 102.24 4.67 4.40

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7481

Fig. 5 Motor control model

5.2 Motor Control Model

The motor control model is provided by our research partner, who is an automotive manufacturer. It is

abstracted from a real automotive control evaluation model. Fig. 5 provides an overview of the motor control

model. This model is a multi-rate Simulink model and contains complex Simulink structures such as triggered

subsystems and S-functions. There are a total of 514 Simulink blocks in the motor control model, which reduces

to 31 after hierarchical clustering. The number of communication edges between clusters is 83. In this

experiment, we perform parallelization on the motor control model with our approach. We then implement it

on the Odroid-XU4 [16] board to evaluate the execution time of the generated parallel code with the core

assignment solution from our ILP formulation. ODROID-XU4 is one of the latest single board computing devices

and equips a Samsung Exynos 5422 processor which includes four Cortex-A15 and four Cortex-A7 cores in a

big.LITTLE configuration, as shown in Fig. 6. Ubuntu 16.04.3 is run on Odroid-XU4, and we set the CPUFreq

Governor policy to performance mode to ensure that the cores work at the highest clock frequency, where

Cortex-A15 is at 2 GHz and Cortex-A7 is at 1.4 GHz. From the performance evaluation of the big cores and the

LITTLE cores, we set the LITTLE cores as the base cores, and the 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑 of the big cores is set to 2.2 times

that of the 𝑐𝑜𝑟𝑒_𝑠𝑝𝑒𝑒𝑑 of the LITTLE cores. Although we observe the execution time may suffer from influences,

such as OS or TDP limit, 𝑐𝑜𝑟𝑒_𝑢𝑡𝑖𝑙 of each core is set to 1. We input the motor control model and the description

file of Odroid-XU4 to our proposed approach and generate the core assignment solutions and the parallel codes

for the specified configurations. Considering the number of clusters in the motor control model, we use at most

4 cores in the experiment. We execute each of these generated parallel codes on the Odroid-XU4 board and

record the execution times. Our approach takes only several minutes to generate these parallel codes.

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7482

Fig. 6 Overview of Odroid-XU4

Fig. 7 Speedup performance of generated codes executed on ODROID-XU4

Fig. 7 shows the speedup performance of generated codes of different configurations to be implemented on

ODROID-XU4. L and B in the configuration name denote the number of LITTLE or big cores being used to

execute the generated parallel codes. We record the average time taken to execute the generated source code

on ODROID-XU4 in seconds. The average speedup is the ratio between the average execution time on a LITTLE

core and the average execution time of the given configurations.The results show that the execution on

ODROID-XU4 has lower speedup as compared to the randomly generated cluster graphs in 5. 1, where speedup

is calculated ideally at the cluster level. However, the core assignment in the configurations with both big and

LITTLE cores achieves a decrease in application execution time and reasonable speedup, as compared to the

configurations where the same type of core is used. This shows that for a control model of this size, our approach

achieves a reasonably high parallel efficiency and low communication cost on such processors in a short solver

time.

However, we observe in the result that in some configurations, more time is taken to execute the model when

more cores are being used. For example, as compared to two big and two LITTLE cores, the speedup is lower

when two big cores and only one LITTLE core is used. This happens because using more LITTLE cores results in

more signal lines across the big and LITTLE cores. These signal lines may lead to heavier inter-group

communication during the execution and the whole execution time of the application will increase. Also, the

motor control model is a multirate model based on real scenarios. Most of its blocks have higher control rates

and only a few blocks have a lower control rate. Owing to the workload constraints in our ILP formulation, if too

many LITTLE cores are used for implementation, some high rate blocks are assigned to these slow cores and the

threads on the LITTLE cores may suffer a much longer execution time, resulting in a lower speedup. We observe

that when using both big and LITTLE cores, using one LITTLE core and two big cores is the best choice to

implement the motor control model. In this configuration, most of the low rate blocks are assigned to the LITTLE

core, whereas the heavy blocks are distributed to the two big cores to be executed in a well-parallelized manner.

This shows a potential utilization of our approach when multiple models must be executed on a processor

simultaneously. By merging multiple models into 1 cluster graph, and avoiding blocks of different models from

being grouped into the same cluster, our approach can find the optimal solution to parallelize these blocks on

the heterogeneous cores with an optimal execution time of the models and utilization of the cores. However, it

also leads to a challenge in parallelizing a Simulink model on a single-ISA heterogeneous multicore processor

with ARM big.LITTLE architecture. When several cores of different performances on a processor are specified to

implement a control model, it is possible that using only some of the given cores achieves the best parallel

performance. Thus, a proper prediction is necessary to build the ILP formulation.

6 Conclusion

In this paper, we addressed a model-based parallelization approach based on ILP to parallelize embedded

control systems designed on the MATLAB/Simulink platform for single-ISA heterogeneous multicore processors,

especially the processors with ARM big.LITTLE architecture. In comparison to existing methods, our method can

minimize the communication cost across the cores to generate a better parallelization solution, while

1

2.18

1.07

2.64 2.78

1.15

2.34
2.87 2.97

1.23

2.25 2.36
2.72

3.11

0

1

2

3

4

L B 2L LB 2B 3L 2LB L2B 3B 4L 3LB 2L2B L3B 4B

A
v
e
ra

g
e
 s

p
e
e
d

u
p

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7483

distributing the workload of the input Simulink blocks to the cores having different performances. Moreover,

our approach utilizes the characteristics of ARM big.LITTLE architecture to achieve high parallel efficiency and

core utilization. The results on randomly generated data have shown that a higher speedup and lower

communication cost are achieved by our approach on the assumed architectures. We also implement a real

model on the ODROID-XU4 board and observe a reasonable speedup performance. Besides ARM big.LITTLE

architecture, our ILP formulation can also be applied to other Single-ISA heterogeneous multi-core architectures

where cores can be grouped to heterogeneous clusters by inter-core communication overhead, and the

available cores in each cluster share inter-core communication overhead at a close range. In future work, we

plan to extend our approach to architectures where cores have more complicated communication behavior.

Conflicts of Interest

The authors declare no conflicts of interest associated with this manuscript.

Acknowledgments

 This work was supported by JSPS KAKENHI Grant Number 16H02800.

References

1. MathWorks, Inc. "Simulation and Model-Based Design." https://jp.mathworks.com/products/simulink.

html, 2015.

2. Kumar, Rakesh, et al. "Single-ISA heterogeneous multi-core architectures: The potential for processor power

reduction." Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture. IEEE

Computer Society, 2003.

3. Chung, Hongsuk, Munsik Kang, and Hyun-Duk Cho. "Heterogeneous Multi-Processing Solution of Exynos 5

Octa with ARM® big. LITTLE™ Technology." Samsung White Paper (2012).

4. Gondo, Masaki, Fumio Arakawa, and Masato Edahiro. "Establishing a standard interface between multi-

manycore and software tools-SHIM." COOL Chips XVII, 2014 IEEE. IEEE, 2014.

5. MathWorks, Inc. "MATLAB Coder Generate C and C++ code from MATLAB code."

https://jp.mathworks.com/products/matlab-coder.html, The MathWorks, Inc, 2012.

6. Dan, Umeda, Youhei, Kanehagi, et al. "Automatic Parallelization of Designed Engine Control C Codes by

MATLAB/Simulink. " Journal of Information Processing, Vol.55, No.8, pp 1817-1829, 2014.

7. Cha, Minji, et al. "Deriving high-performance real-time multicore systems based on simulink applications."

Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International Conference on. IEEE,

2011.

8. Kumura, Takahiro, et al. "Model based parallelization from the simulink models and their sequential C code."

Proceedings of the 17th Workshop on Synthesis And System Integration of Mixed Information Technologies

(SASIMI 2012). 2012.

9. Höttger, Robert, Lukas Krawczyk, and Burkhard Igel. "Model-based automotive partitioning and mapping

for embedded multicore systems." International Conference on Parallel, Distributed Systems and Software

Engineering. Vol. 2. No. 1. 2015.

10. Yi, Ying, et al. "An ILP formulation for task mapping and scheduling on multi-core architectures." Proceedings

of the conference on design, automation and test in Europe. European Design and Automation Association,

2009.

11. Tuncali, Cumhur Erkan, Georgios Fainekos, and Yann-Hang Lee. "Automatic Parallelization of Simulink

Models for Multi-core Architectures." High Performance Computing and Communications (HPCC), 2015 IEEE

7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International

Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on. IEEE,

2015.

International Journal of Computers & Technology Vol 19 (2019) ISSN: 2277-3061 https://cirworld.com/ind.php/ijct

7484

12. Sou, Aburadani, and Masato, Edahiro. "Task Mapping Method for Hierarchical Many-core Processor

Architectures." Journal of Information Processing, Vol.56, No.8, pp 1568-1581, 2015.

13. Edahiro, Masato, and Takeshi, Yoshimura. "New placement and global routing algorithms for standard cell

layouts." Design Automation Conference, 1990. Proceedings., 27th ACM/IEEE. IEEE, 1990.

14. Multicore Association. "SHIM - Multicore Association." https://www.multicore-association.org/workgroup/

shim.php, 2018.

15. Embedded Multicore Consortium. Discussion at Embedded Multicore Consortium, 2015.

16. Hoare, Charles Antony Richard. "Communicating sequential processes." Communications of the ACM 21.8

(1978): 666-677.

17. Hardkernel. ”ODROID-XU4 User Manual.” http://www.hardkernel.com, 2017.

18. Franklin, D. "NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge." NVIDIA Accelerated Computing|

Parallel Forall (2017).

19. CPLEX, IBM ILOG. "12.7, User’s Manual for CPLEX." CPLEX division, 2016.

20. Karypis, George, and Vipin Kumar. "Multilevelk-way partitioning scheme for irregular graphs." Journal of

Parallel and Distributed computing 48.1 (1998): 96-129.

21. Karypis, George. "hMETIS 1.5: A hypergraph partitioning package." http://www.cs.umn.edu/~metis, 1998.

