International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

An Alternate Algorithm for (3x3) Median Filtering of Digital
Images

Satinderjit Singh
HoD, Computer Sc.deptt.
GGNIMT, Ludhina, Punjab (India)

satinderjits@in.com

ABSTRACT

Median filtering is a commonly used technique in image
processing. The main problem of the median filter is its high
computationd cost (for sorting N pixds, the tenpord
complexity is O(N-log N), even with the most efficient sorting
d gorithms). When the median filter must be carried out in red
time, the software implementation in general-purposeprocessors
does not usualy gve good results. This Pger presets an
efficient dgorithm for median filtering with a 3x3 filter kernd
with only about 9 comparisons per pixd using spatia coherence
between neighboring filter computations. The basic agorithm
caculates two medians in one ste and reuses sorted slices of
threevertica neighboring pixes. An extension of this d gorithm
for 2D spatid coherenceis aso examined, which calcul ates four
medians per step.

Keywords

Linear filtering, nonlinear filter, Median filter, bubble sort,
Quick sort, computationd cost, Algorithm complexity .

1. INTRODUCTION

Image processing is a very important field within industria
automation, and more concretely, in the automated visud
inspection. In these gplications, the main chalenge normally is
the requirement of real-time results. Image processing is a very
important fidd within industrid automation, and more
concretely, in the automated visua ingection. For example
automatically analy zing predetermined f eatures of manufactured
parts on an assembly line to look for defects and process
variations. In these gpplications, the main chalenge normaly is
therequirement of red-timeresults . On the other hand, in many
of these applications, the acquired images must pass through a
stage of image preprocessing in order to remove distracting and
usdless information from theimages. For example, the existence
of impulsive noise in the images is one of the most habitua
problems

Median filter is the nonlinear filter more used to remove the
impulsive noise-from an image. Furthermore, it is amore robust
method than the traditiona lineer filtering, because it preserves
the shap edges. Furthermore, it is a more robust method than
the traditiona linear filtering, because it preserves the shap
edges. Typicdly used on signds that may contain outliers
skewing the usua statistica estimators, it is usualy considered
too expensive to be implemented in red-time or CPU-intensive
goplications. The median vaue is determined by placing the
brightnesses in ascending order and selecting the centre value.

The obtained median vaue will bethe vdue for that pixe inthe
output image. Figure shows an example of the median filter
gpplication, as in this case, habitudly a 3x3 median filter is
used.

M edian filter is a spatid filtering operation, so it uses a 2-D
mask that is gpplied to each pixel in the input image. To apply
the mask means to centre it in a pixel, evduating the covered
pixel brightness and determining which brightness vaue is the
median vaue. The median filter is normally used to reduce noise
in an image, somewhat like the mean filter. However, it often
does a better job than the mean filter of preserving useful detail
intheimage.

2. BASICSOF MEDIAN FILTERING

Like the mean filter, the median filter considers each pixel in the
image in turn and looks a its nearby neighbors to decide
whether or not it is representative of its surroundings. Instead of
simply replacing the pixe value with the mean of neighboring
pixel values, it replaces it with the median of those vaues. The
median is caculated by first sortingdl the pixel values from the
surrounding neighborhood into numerica order and then
replacingthe pixel being considered with the middle pixe value.
(If the neighborhood under consideration contains an even
number of pixels, the average of the two middle pixel vaues is
used.) Figure 1 illustrates an example caculation.

125 135 [120 | 230 14D

Meighbourhood vaucs:
1221 124 P 130 | 37] 12N

125, 126, 127,150

TIR TR 196 | 729] 13

LIV LIS A% | 20] 1

W adlan valie: 124
111 11 |1 2¢ 13D

Figure 1 Cdculatingthe median vaue of apixel nel ghborhood.

As can be seen the centrd pixed value of 150 is rather
unrepresentative of the surrounding pixels and is replaced with
the median value: 124. A 3x3 square neighborhood is used here
--- lar ger neighborhoods’ will produce more sev ere smoothing.

Figure below presents the concept of satid filtering based on a
3x3 mask, where | istheinput image and O is the output image.

115, 119,124,123, 124,

http://www.cee.hw.ac.uk/hipr/html/mean.html
http://www.cee.hw.ac.uk/hipr/html/mean.html
http://www.cee.hw.ac.uk/hipr/html/mean.html
http://www.cee.hw.ac.uk/hipr/html/mean.html

12 02

TG4y) olE Ay

The median value is determined by placing the bright nesses in
ascending order and seecting the centre value. The obtained
median vaue will bethevalue for that pixe in the output image.
Figure shows an example of the median filter application, as in
this case, habitualy a3x3 median filter is used.

Brighiness Values
-1 1] 1 i

-1 10 | 30 5

1] 20 | 200 | 20

1 15 | 10 | 30

T

i

Brightness Values in Order

510 10 15 20 20 30 30 200

I

Median

3. ADVANTAGES OVER MEAN FILTER

By caculating the median value of a nei ghbourhood rather
than the mean filter, the median filter has two main
advantages over the mean filter:

l. The median is a more robust average than the mean
and so a singe very unrepresentaive pixd in a
nei ghbourhood will not affect the median value
significantly.

1. Snce the median value must actudly be the value of
one of the pixes in the ne ghbourhood, the median
filter does not create new unredistic pixel vaues when
thefilter straddles an edge. For this reason the median
filter is much better a preserving sharp edges than the
mean filter

In general, the median filter allows a great deal of high spatia
frequency detall to pass while remaning very effective a
removing noise on images where less than half of the pixelsin a
smoothing nei ghborhood have been effected.

4. THEOPTIMIZATION PROBLEM

The main problem of the median filter is its high computationd
cost (for sorting N pixels, the tempora complexity is O(N-log
N), even with the most efficient sorting a gorithms). When the
median filter must be caried out in red time, the software
implementation in genera-purpose processors does nat usualy

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

gve good results. It is usudly considered too expensive to be
implemented in red-time or CPU-intensive goplications. One of
the mgjor problems with the median filter is that it is relatively
expensive and complex to compute. To find the median it is
necessary to sort dl the vadues in the neighbourhood into
numerica order and thisisrelatively slow, even with fast sorting
a gorithms such as quicksort. The basic dgorithm can however
be enhanced somewhat for speed. A common technique is to
notice that when the neighbourhood window is slid across the
image, many of the pixds in the window are the same from one
step to the next, and the relative ordering of these with each
other will obviously not have changed. Clever al gorithms make
use of this to inprove performance.

4.1 Background work

The median filter is often used to remove "shot" noise, pixe
dropouts and other spurious features of single pixd extent while
preserving overadl image qudity [Huang 1981] [Paeth 19864
[Paeth 1986b]. In contragt, low pass filters would only blurr the
noiseinstead of removingit. An efficient a gorithm to determine
the median is desired, because this operation often has to be
repested millions of times for filtering largeimages.

One simple gpproach, which is often found in image processing
textbooks, is to caculate the 3x3 median using a simple sorting
a gorithm, like bubble sort or quicksort, and pick the 5 element
after the sorting. An improvement to this simple technique is
only to sort until the 5th dement is determined. For example a
modified bubble sort can be used to sort until the 5th dement.
This agpproach yieds 30 comparisons for one median
cdculation.

A better goproach is published in the first Volume of the
Graphics Gems series by Paeth [Paeth 1990]. This gpproach is
based on a successive minmax-eimination: the minimum and
the maximum of the first six dements are determined and
eiminated. Then the 7th dement is added to the remaining four
of the firg pass and the minimum and the maximum of the five
dements ae determined and eiminated. This scheme is
repested until the 9th eement is added to the remainingtwo and
the minmax-eéimination results in the median of dl nine
elements. This agorithm needs 20 comparisons per median. The
drawback, that the d gorithm does not use spatia coherence, can
essily be remedied: Smply caculate two neighbouring medians
in one step, where the firg minmax-eimination is computed
from the common six elements and can be used for both
medians. This improvement would result in abetter performance
usingonly 16.5 comparisons per median.

A comparison of other median filtering a gorithms can be found
in [Juhola et a. 1991], but these techniques are not optimized
for the common 3x3 kernel.

The dgorithm proposed here uses coherence information
between nei ghbouring median ca culations more efficiently and
therefore needs only a maximum of 9.5 comparisons per
median. The average number of comparisons is even a little
smaller.

5. ALGORITHMIC CONCEPT

The proposed agorithm computes two neighbouring medians in
one step. Let us assumethat the neighbouring medians we want
to caculate are horizontaly adjacent to each other. This means,

http://www.cee.hw.ac.uk/hipr/html/mean.html

if the first median is a position (xy), the second is & (x+1,y).
Therefore we haveto look a the 4x3 pixels within the rectangle
(-1y-1)-(x+2,y+1). Let us subdivide these points into four
vertical slices each containing three pixds.

Thefirst step of the agorithm sorts the pixels within the slices.
Only the last two slices have to be sorted, because the first two
were dready sorted during the cdculation of the medians
caculated before. Only when the fird two medians in a row are
computed, the first two slices aso have to be daermined as
wdl. Therefore this stgp consumes a maximum of 6
comparisons for amedian ca culation in the non border case.

The second step sorts the second and third slice according the
mer ge sort a gorithm. Because of time considerations this should
be done with nested |F statments instead of a conventiona loop.
This adds up to amaximum of 5 comparisons for this step.

Thethird step computesthefirst median with amodified merge
sort of the firg slice and the sorted middle six elements and the
second median from the sorted middle six eements and the
fourth slice. Snce we are not interested in the sorting of the
dements, but only in the median, the merge sort is modified so
that it does not sore the dements in the sorted order, but only

remembers which rank it is now processing and which are the
two possible dements, which could have the next rank. Also the
first and the last element of the sorted six elements can not be a
3x3 median: The median of nine element has rank 5 therefore it
has four d ements, that are lower or equal the median and four

that are higher or equal. Since the first of the six elements has
only passibly three eements - the dements from the compared

slice - which are lower or equal, this eement can not be the
median. The proof for the las eement is andog Instead of
computing the median via the determination of the rank five
dement of asorted slice and a sorted list of six dements, it can
be computed via the rank four dement of a sorted slice and the
middle four € ements of the sorted six elements. For efficiency

reasons the modified mer ge sort should be computed with nested
IF statements rather than with loops. This ¢ needs maximal

two times 4 comparisons. Summing up the maxima

comparisons of the three steps dves 19 comparisons per two
medians or 9.5 comparisons per median in the worst case. The
average of an efficient implementation is about 9.0 comparisons.

5.1 Extension using 2D coherence

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

An exension to the proposed agorithm uses 2D coherence
through the computation of four medians arranged in a2x2 grid,
instead of the computaion of only two neighbouring medians
per gep. The extended a gorithm handles these four medians in
two times two medians using our proposed 1D coherence
agorithm. The only difference lies in the computation of the
sorted slices (g¢ep one). Ingead of computing them
independently for the upper two medians and the lower two,
coherence is used: For each slice for the upper part we have an
overlgp of two dements with one slice of the lower part. The
idea is to sort these two dements first and use it for the sorting
of both slices. This improvement saves an additional 1/2
comparison yielding 9.0 comparisons per median in the worst
case.

6. CONCLUSION

This pgper presented an agorithm how a 3x3 kernd median
filtering of araster image can efficiently be implemented using
spaia coherence between neighbouring median calcul aions.
The 2D extension to the algorithm showed better theoretica but
depending on the hardware little better to little worse practicd
results.

7. REFERENCES

[1] Paeth 1990 A. W. Paeth. M edian finding on a 3x3 Grid. In
Andrew Glassner, editor,Grgphic Gems, pages 171-175.
Academic Press, Boston, 1990.

[2] [Paeth 1990] A. W. Paeth. M edian finding on a 3x3 Grid. In
Andrew Glassner, editor,Grgphic Gems, pages 171-175.
Academic Press, Boston, 1990.

[3] L.Yin, R. Yang M. Gabbouj, Y. Neuvo. “Weighted M edian
Filters: A Tuorid”, IEEE Trans. on Circuits and Systems,
43(3), pp. 157-192 (M arch 1996).

[4] T.SHuang, G.J.Yang, G.Y.Tang, A fast two dimensiond
median filter algorithm, |EEE transactions on acoustics, speech
and signa processing, Vol A SSP 27 No 1, Feb 1979.

[5] Aho, Hopcroft, Ullman, The design and anay sis of computer
a gorithms (p 102).

[6] The Image Processing Handbook, John C. Russ, CRC Press
(second edition 1995)

	THE OPTIMIZATION PROBLEM

