
International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

 7

An Alternate Algorithm for (3x3) Median Filtering of Digital
Images

Satinderjit Singh

HoD, Computer Sc.deptt.
GGNIMT, Ludhina, Punjab (India)

satinderjits@in.com

ABSTRACT

Median filtering is a commonly used technique in image
processing. The main problem of the median filter is its high
computational cost (for sorting N pixels, the temporal
complexity is O(N·log N), even with the most efficient sorting
algorithms). When the median filter must be carried out in real
time, the software implementation in general-purpose processors
does not usually give good results. This Paper presents an
efficient algorithm for median filtering with a 3x3 filter kernel
with only about 9 comparisons per pixel using spatial coherence
between neighboring filter computations. The basic algorithm
calculates two medians in one step and reuses sorted slices of
three vertical neighboring pixels. An extension of this algorithm
for 2D spatial coherence is also examined, which calculates four
medians per step.

Keywords

Linear filtering, nonlinear filter, Median filter, bubble sort,
Quick sort, computational cost, Algorithm complexity.

1. INTRODUCTION

Image processing is a very important field within industrial
automation, and more concretely, in the automated visual
inspection. In these applications, the main challenge normally is
the requirement of real-time results. Image processing is a very
important field within industrial automation, and more
concretely, in the automated visual inspection. For example
automatically analyzing predetermined features of manufactured
parts on an assembly line to look for defects and process
variations. In these applications, the main challenge normally is
the requirement of real-time results . On the other hand, in many
of these applications, the acquired images must pass through a
stage of image preprocessing in order to remove distracting and
useless information from the images. For example, the existence
of impulsive noise in the images is one of the most habitual
problems

Median filter is the nonlinear filter more used to remove the
impulsive noise-from an image. Furthermore, it is a more robust
method than the traditional linear filtering, because it preserves
the sharp edges. Furthermore, it is a more robust method than
the traditional linear filtering, because it preserves the sharp
edges. Typically used on signals that may contain outliers
skewing the usual statistical estimators, it is usually considered
too expensive to be implemented in real-time or CPU-intensive
applications. The median value is determined by placing the
brightnesses in ascending order and selecting the centre value.

The obtained median value will be the value for that pixel in the
output image. Figure shows an example of the median filter
application, as in this case, habitually a 3x3 median filter is
used.

Median filter is a spatial filtering operation, so it uses a 2-D
mask that is applied to each pixel in the input image. To apply
the mask means to centre it in a pixel, evaluating the covered
pixel brightness and determining which brightness value is the
median value. The median filter is normally used to reduce noise
in an image, somewhat like the mean filter. However, it often
does a better job than the mean filter of preserving useful detail
in the image.

2. BASICS OF MEDIAN FILTERING

Like the mean filter, the median filter considers each pixel in the
image in turn and looks at its nearby neighbors to decide
whether or not it is representative of its surroundings. Instead of
simply replacing the pixel value with the mean of neighboring
pixel values, it replaces it with the median of those values. The
median is calculated by first sorting all the pixel values from the
surrounding neighborhood into numerical order and then
replacing the pixel being considered with the middle pixel value.
(If the neighborhood under consideration contains an even
number of pixels, the average of the two middle pixel values is
used.) Figure 1 illustrates an example calculation.

Figure 1 Calculating the median value of a pixel neighborhood.

As can be seen the central pixel value of 150 is rather
unrepresentative of the surrounding pixels and is replaced with
the median value: 124. A 3×3 square neighborhood is used here
--- larger neighborhoods’ will produce more severe smoothing.

Figure below presents the concept of spatial filtering based on a
3x3 mask, where I is the input image and O is the output image.

http://www.cee.hw.ac.uk/hipr/html/mean.html
http://www.cee.hw.ac.uk/hipr/html/mean.html
http://www.cee.hw.ac.uk/hipr/html/mean.html
http://www.cee.hw.ac.uk/hipr/html/mean.html

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

 8

The median value is determined by placing the bright nesses in
ascending order and selecting the centre value. The obtained
median value will be the value for that pixel in the output image.
Figure shows an example of the median filter application, as in
this case, habitually a 3x3 median filter is used.

3. ADVANTAGES OVER MEAN FILTER
By calculating the median value of a neighbourhood rather
than the mean filter, the median filter has two main
advantages over the mean filter:

I. The median is a more robust average than the mean
and so a single very unrepresentative pixel in a
neighbourhood will not affect the median value
significantly.

II. Since the median value must actually be the value of
one of the pixels in the neighbourhood, the median
filter does not create new unrealistic pixel values when
the filter straddles an edge. For this reason the median
filter is much better at preserving sharp edges than the
mean filter

In general, the median filter allows a great deal of high spatial
frequency detail to pass while remaining very effective at
removing noise on images where less than half of the pixels in a
smoothing neighborhood have been effected.

4. THE OPTIMIZATION PROBLEM

The main problem of the median filter is its high computational
cost (for sorting N pixels, the temporal complexity is O(N·log
N), even with the most efficient sorting algorithms). When the
median filter must be carried out in real time, the software
implementation in general-purpose processors does not usually

give good results. It is usually considered too expensive to be
implemented in real-time or CPU-intensive applications. One of
the major problems with the median filter is that it is relatively
expensive and complex to compute. To find the median it is
necessary to sort all the values in the neighbourhood into
numerical order and this is relatively slow, even with fast sorting
algorithms such as quicksort. The basic algorithm can however
be enhanced somewhat for speed. A common technique is to
notice that when the neighbourhood window is slid across the
image, many of the pixels in the window are the same from one
step to the next, and the relative ordering of these with each
other will obviously not have changed. Clever algorithms make
use of this to improve performance.

4.1 Background work
The median filter is often used to remove "shot" noise, pixel
dropouts and other spurious features of single pixel extent while
preserving overall image quality [Huang 1981] [Paeth 1986a]
[Paeth 1986b]. In contrast, low pass filters would only blurr the
noise instead of removing it. An efficient algorithm to determine
the median is desired, because this operation often has to be
repeated millions of times for filtering large images.

One simple approach, which is often found in image processing
textbooks, is to calculate the 3x3 median using a simple sorting
algorithm, like bubble sort or quicksort, and pick the 5th element
after the sorting. An improvement to this simple technique is
only to sort until the 5th element is determined. For example a
modified bubble sort can be used to sort until the 5th element.
This approach yields 30 comparisons for one median
calculation.

A better approach is published in the first Volume of the
Graphics Gems series by Paeth [Paeth 1990]. This approach is
based on a successive minmax-elimination: the minimum and
the maximum of the first six elements are determined and
eliminated. Then the 7th element is added to the remaining four
of the first pass and the minimum and the maximum of the five
elements are determined and eliminated. This scheme is
repeated until the 9th element is added to the remaining two and
the minmax-elimination results in the median of all nine
elements. This algorithm needs 20 comparisons per median. The
drawback, that the algorithm does not use spatial coherence, can
easily be remedied: Simply calculate two neighbouring medians
in one step, where the first minmax-elimination is computed
from the common six elements and can be used for both
medians. This improvement would result in a better performance
using only 16.5 comparisons per median.

A comparison of other median filtering algorithms can be found
in [Juhola et al. 1991], but these techniques are not optimized
for the common 3x3 kernel.

The algorithm proposed here uses coherence information
between neighbouring median calculations more efficiently and
therefore needs only a maximum of 9.5 comparisons per
median. The average number of comparisons is even a little
smaller.

5.ALGORITHMIC CONCEPT

The proposed algorithm computes two neighbouring medians in
one step. Let us assume that the neighbouring medians we want
to calculate are horizontally adjacent to each other. This means,

http://www.cee.hw.ac.uk/hipr/html/mean.html

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

 9

if the first median is at position (x,y), the second is at (x+1,y).
Therefore we have to look at the 4x3 pixels within the rectangle
(x-1,y-1)-(x+2,y+1). Let us subdivide these points into four
vertical slices each containing three pixels.

The first step of the algorithm sorts the pixels within the slices.
Only the last two slices have to be sorted, because the first two
were already sorted during the calculation of the medians
calculated before. Only when the first two medians in a row are
computed, the first two slices also have to be determined as
well. Therefore this step consumes a maximum of 6
comparisons for a median calculation in the non border case.

The second step sorts the second and third slice according the
merge sort algorithm. Because of time considerations this should
be done with nested IF statments instead of a conventional loop.
This adds up to a maximum of 5 comparisons for this step.

The third step computes the first median with a modified merge
sort of the first slice and the sorted middle six elements and the
second median from the sorted middle six elements and the
fourth slice. Since we are not interested in the sorting of the
elements, but only in the median, the merge sort is modified so
that it does not store the elements in the sorted order, but only
remembers which rank it is now processing and which are the
two possible elements , which could have the next rank. Also the
first and the last element of the sorted six elements can not be a
3x3 median: The median of nine element has rank 5 therefore it
has four elements, that are lower or equal the median and four
that are higher or equal. Since the first of the six elements has
only possibly three elements - the elements from the compared
slice - which are lower or equal, this element can not be the
median. The proof for the last element is analog. Instead of
computing the median via the determination of the rank five
element of a sorted slice and a sorted list of six elements, it can
be computed via the rank four element of a sorted slice and the
middle four elements of the sorted six elements. For efficiency
reasons the modified merge sort should be computed with nested
IF statements rather than with loops. This step needs maximal
two times 4 comparisons. Summing up the maximal
comparisons of the three steps gives 19 comparisons per two
medians or 9.5 comparisons per median in the worst case. The
average of an efficient implementation is about 9.0 comparisons.

5.1 Extension using 2D coherence

An extension to the proposed algorithm uses 2D coherence
through the computation of four medians arranged in a 2x2 grid,
instead of the computation of only two neighbouring medians
per step. The extended algorithm handles these four medians in
two times two medians using our proposed 1D coherence
algorithm. The only difference lies in the computation of the
sorted slices (step one). Instead of computing them
independently for the upper two medians and the lower two,
coherence is used: For each slice for the upper part we have an
overlap of two elements with one slice of the lower part. The
idea is to sort these two elements first and use it for the sorting
of both slices. This improvement saves an additional 1/2
comparison yielding 9.0 comparisons per median in the worst
case.

6. CONCLUSION
This paper presented an algorithm how a 3x3 kernel median
filtering of a raster image can efficiently be implemented using
spatial coherence between neighbouring median calculations.
The 2D extension to the algorithm showed better theoretical but
depending on the hardware little better to little worse practical
results.

7. REFERENCES

[1] Paeth 1990 A. W. Paeth. Median finding on a 3x3 Grid. In
Andrew Glassner, editor,Graphic Gems, pages 171-175.
Academic Press, Boston, 1990.

[2] [Paeth 1990] A. W. Paeth. Median finding on a 3x3 Grid. In
Andrew Glassner, editor,Graphic Gems, pages 171-175.
Academic Press, Boston, 1990.

[3] L. Yin, R. Yang, M. Gabbouj, Y. Neuvo. “Weighted Median
Filters: A Tutorial”, IEEE Trans. on Circuits and Systems,
43(3), pp. 157-192 (March 1996).

[4] T.S.Huang, G.J.Yang, G.Y.Tang, A fast two dimensional
median filter algorithm, IEEE transactions on acoustics, speech
and signal processing, Vol ASSP 27 No 1, Feb 1979.

[5] Aho, Hopcroft, Ullman, The design and analysis of computer
algorithms (p 102).

[6] The Image Processing Handbook, John C. Russ, CRC Press
(second edition 1995)

	THE OPTIMIZATION PROBLEM

