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ABSTRACT 
Today, graph theory has become major instrument that is used 
in an array of fields. Some of these include electrical 
engineering, mathematical research, sociology, economics, 
computer programming/networking, business administration 
and marketing. Indeed, many problems can be modeled with 
paths formed by traveling along the edges of a certain graph. 

Frequently referenced problems are efficiently planning routes 
for mail delivery, garbage pickup and snow removal, which 
can be solved using models that involve paths in graphs. 
Given these kinds of problems, graphs can become extremely 
complex, and a more efficient way of representing them is 
needed in practice. This is where the concept of the adjacency 
matrix & adjacency list comes into play.   
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1. INTRODUCTION 
There are two standard ways of representing or maintaining a 

graph G in memory of a computer.  

1. Sequential representation of G using adjacent 
matrix. 

2. Linked representation of G using adjacent list. 
 

Regardless of the way one maintains a graph G in the memory 

of the computer, the graph G is normally input into the 

computer by using its formal definition: a collection of nodes 

and a collection of edges. 

 Sequential representation of a graph  

Adjacency Matrix---- In mathematics and computer science, 

an adjacency matrix is a means of representing which vertices 

of a graph are adjacent to which other vertices. Specifically, 

the adjacency matrix of a finite graph G on n vertices is the n 

× n matrix where the non diagonal entry aij is the number of 

edges from vertex i to vertex j, and the diagonal entry aii, 

depending on the convention, is either once or twice the 

number of edges (loops) from vertex i to  itself. Undirected 

graphs often use the former convention of counting loops 

twice, whereas directed graphs typically use the latter 

convention. There exists a unique adjacency matrix for each 

graph (up to permuting rows and columns), and it is not the 

adjacency matrix of any other graph. In the special case of a 

finite simple graph, the adjacency matrix is a (0, 1)-matrix 

with zeros on its diagonal. If the graph is undirected, the 

adjacency matrix is symmetric. 

Suppose G is a simple directed graph with m nodes, and 

suppose the nodes of G have been ordered and are called v1, 

v2…, vm. Then the adjacency matrix A = (aij) of the graph G 

is the m × m matrix defined as follows: 

aij = { 1   if vi is adjacent to vj, i.e.; if there is an edge (vi, vj). 

0 otherwise} 

Such a matrix A, which contains entries of only 0 and 1, is 

called a Bit matrix or a Boolean matrix. 

The adjacency matrix A of graph G does depend on the 

ordering of the nodes of G, that is, a different ordering of 

nodes may result in a different adjacency matrix. However, 

the matrices resulting from two different orderings are closely 

related in that one can be obtained from the other by simply 

interchanging rows and columns. Unless otherwise stated, we 

will assume that the nodes of our graph G have a fixed 

ordering. 

Suppose G is an undirected graph. Then the adjacency matrix 

A of G will be a symmetric matrix, i.e; one in which aij = aji 

for every i and j. This follows from the fact that each 

undirected edge [u, v] corresponds to the two directed edges 

(u, v) and (v, u).  

The above matrix representation of a graph may be extended 

to multigraphs. Specifically, if G is a multigraph, then the 

adjacency matrix of G is the m × m matrix A = (aij) defined 

by setting aij, equal to the number of edges from vi to vj. 

Consider the graph G in Fig. 1. Suppose the nodes are 

stored in memory in a linear array DATA as follows: 

DATA:      X, Y, Z, W 

Then we assume that the ordering of the nodes in G is as 

follows: v1=X, v2=Y, v3=Z and v4=W. The adjacency matrix 

A of G is as follows: 

              0    0    0    1 

              1    0    1    1 

 A =       1    0    0    1 

              0    0    1    0 

Note that the number of 1’s in A is equal to the number of 

edges in G. 
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Y                                                    X 

 

Z          W 

                   Fig. 1 

Consider the powers A, A2, A3… of the adjacency matrix A 

of a graph G. Let ak (i,j) = the ij entry in the matrix Ak. 

Observe that a1 (i,j) = aij gives the number of paths of length 

1 from node vi to node vj. One can show that a2 (i,j) gives the 

number of paths of length 2 from vi to vj.  

Adjacency matrix of a bipartite graph----- 

The adjacency matrix A of a bipartite graph whose parts have 

r and s vertices has the form: 

 

where B is an r × s matrix and O is an all-zero matrix. Clearly, 

the matrix B uniquely represents the bipartite graphs, and it is 
commonly called its biadjacency matrix. Formally, let G = (U, 
V, E) be a bipartite graph or bigraph with parts U = u1... ur 
and V = v1,...,vs.  

An r x s 0-1 matrix B is called the biadjacency matrix if Bi,j 

= 1 iff . 

If G is a bipartite multigraph or weighted graph then the 
elements Bi,j are taken to be the number of edges between or 
the weight of (ui,vj) respectively. 

Path Matrix----  

Let G be a simple directed graph with m nodes, v1, v2……, 
vm. The path matrix or reach ability matrix of G is the m-
square matrix P= (pij) defined as follows: 

Pij= {1 if there is a path from vi to vj 

       {0 otherwise 

Suppose there is a path from vi to vj. Then there must be a 

simple path from vi to vj when vi ≠ vj, or there must be a 

cycle from vi to vj when vi = vj. Since G has only m nodes, 

such a simple path must have length m – 1 or less, or such a 

cycle must have length m or less. This means that there is a 

non- zero ij entry in the matrix Bm. 

Variations---  

The Seidel adjacency matrix or (0,−1,1)-adjacency matrix of a 

simple graph has zero on the diagonal and entry aij = − 1 if ij 

is an edge and +1 if it is not. This matrix is used in studying 

strongly regular graphs and two-graphs. A distance matrix is 

like a higher-level adjacency matrix. Instead of only providing 

information about whether or not two vertices are connected, 

also tells the distances between them. This assumes the length 

of every edge is 1. A variation is where the length of an edge 

is not necessarily 1. 

Linked representation of graph  

Adjacency list----- 

In graph theory, an adjacency list is the representation of all 
edges or arcs in a graph as a list. If the graph is undirected, 
every entry is a set (or multiset) of two nodes containing the 
two ends of the corresponding edge; if it is directed, every 
entry is a tuple of two nodes, one denoting the source node 
and the other denoting the destination node of the 
corresponding arc. Typically, adjacency lists are unordered. 
Let G be a directed graph with m nodes. The sequential 

representation of G in memory---- i.e; the representation of G 
by its adjacency matrix A--- has a number of major 
drawbacks. First of all, it may be difficult to insert and delete 
nodes in G. This is because the size of A may need to be 
changed and the nodes may need to be reordered, so there 
may be many changes in the matrix A. Furthermore, if the 
number of edges is O(m) or O(m log2 m), then the matrix A 
will be a sparse(will contain many zeros); hence a great deal 
of space will be wasted. Accordingly, G is usually represented 

in memory by a linked representation, also called an 
adjacency structure. 

Consider the graph G in Fig. 2(a). The table in Fig. 2(b) 
shows each node in G followed by its adjacency list, which is 
its list of adjacent nodes, also called its successors or 

neighbors. Fig. 2(c) shows a schematic diagram of a linked 
representation of G in memory.  

Specifically, the linked representation will contain two lists 
(or files), a node list NODE and an edge list EDGE, as 
follows: 

A   D 

         
     E 

 

B            C 

      Fig. 2(a) Graph G 
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Node Adjacency List 

A B, C, D 

B C 

C  

D C, E 

E C 

Fig. 2(b) Adjacency lists of G 

Start    NODE list       EDGE list 

    

 

 

 

 

 

 

 

 

 

 

                     Fig. 2(c) 

(a) Node list--- Each element in the list NODE will 
correspond to a node in G, and it will be a record of the form: 

NODE NEXT ADJ  

Here NODE will be the name or key value of the node, NEXT 

will be a pointer to the next node in the list NODE and ADJ 
will be a pointer to the first element in the adjacency list of 
the node, which is maintained in the list EDGE. The shaded 
area indicates that there may be other information in the 
record, such as the indegree INDEG of the node, the 
outdegree OUTDEG of the node, the STATUS of the node 

during the execution of an algorithm, and so on. 
(Alternatively, one may assume that NODE is an array of 
records containing fields such as NAME, INDEG, OUTDEG, 
STATUS…) The nodes themselves, as pictured in Fig. 2(a) 
and Fig. 2(b) will be organized as a linked list and hence will 
have a pointer variable START for the beginning of the list 
and a pointer variable AVAILN for the list of available space. 
Sometimes, depending on the application, the nodes may be 

organized as a sorted array or a binary search tree instead of a 
linked list. 

 (b) Edge list--- Each element in the list EDGE will 
correspond to an edge of G and will be a record of the form: 

DEST LINK  

The field DEST will point to the location in the list NODE of 

the destination or terminal node of the edge. The field LINK 
will link together the edges with the same initial node, that is, 
the nodes in the same adjacency list. The shaded area 
indicates that there may be other information in the record 
corresponding to the edge, such as a field EDGE containing 
the labeled data of the edge when G is a labeled graph, a field 

WEIGHT containing the weight of the edge when G is a 
weighted graph, and so on. We also need a pointer variable 
AVAILE for the list of available space in the list EDGE. 

Fig. 3 shows how the graph G in Fig. 2(a) and Fig. 2(b) may 
appear in memory. The choice of 10 locations for the list 

NODE and 12 locations for the list EDGE is arbitrary. 

START           NODE    NEXT       ADJ 

1  3  

2 C                        9 0 

3  8  

4 A 7 3 

5  1  

6 E 0 11 

7 B 2 6 

8  10  

9 D 6 1 

10  0  

AVAILN 

     DEST               LINK    AVAILE 

 

 

 

 

 

 

 

                   

Fig. 3 

 

1 2 ( C ) 7 

2  5 

3 7 (B) 10 

4 9 (D) 0 

5  8 

6 2 ( C ) 0 

7 6 (E) 0 

8  9 

9  12 

10 2 ( C ) 4 

11 2 ( C ) 0 

12  0 
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The linked representation of a graph G that we have been 
discussing may be denoted by 

GRAPH(NODE, NEXT, ADJ, START, AVAILN, DEST, 
LINK, AVAILE) 

The representation may also include an array WEIGHT when 
G is weighted or may include an array EDGE when G is a 
labeled graph. 

Data Structures--- 

When used as a data structure, the main alternative for the 
adjacency matrix is the adjacency list. Because each entry in 

the adjacency matrix requires only one bit, they can be 
represented in a very compact way, occupying only n2 / 8 
bytes of contiguous space, where n is the number of vertices. 
Besides just avoiding wasted space, this compactness 
encourages locality of reference. 

On the other hand, for a sparse graph, adjacency lists win out, 

because they do not use any space to represent edges which 
are not present. Using a naïve array implementation on a 32-
bit computer, an adjacency list for an undirected graph 
requires about 8e bytes of storage, where e is the number of 
edges. 

Noting that a simple graph can have at most n2 edges, 
allowing loops, we can let d = e / n2 denote the density of the 
graph. Then, 8e > n2 / 8, or the adjacency list representation 
occupies more space, precisely when d > 1 / 64. Thus a graph 
must be sparse indeed to justify an adjacency list 
representation. 

Besides the space tradeoff, the different data structures also 
facilitate different operations. Finding all vertices adjacent to 
a given vertex in an adjacency list is as simple as reading the 
list.  

With an adjacency matrix, an entire row must instead be 

scanned, which takes O(n) time. Whether there is an edge 
between two given vertices can be determined at once with an 
adjacency matrix, while requiring time proportional to the 
minimum degree of the two vertices with the adjacency list. 

Pros & cons of adjacency matrix----- 

Pros---- 

Adjacency matrix is very convenient to work with. Add 

(remove) an edge can be done in O(1) time, the same time is 

required to check, if there is an edge between two vertices. 

Also it is very simple to program and in all our graph tutorials 

we are going to work with this kind of representation. 

Cons--- 

1. Adjacency matrix consumes huge amount of memory for 

storing big graphs. All graphs can be divided into two 

categories, sparse and dense graphs. Sparse ones contain not 

much edges (number of edges is much less, that square of 

number of vertices, |E| << |V|2). On the other hand, dense 

graphs contain number of edges comparable with square of 

number of vertices. Adjacency matrix is optimal for dense 

graphs, but for sparse ones it is superfluous. 

2. Next drawback of the adjacency matrix is that in many 

algorithms you need to know the edges, adjacent to the 

current vertex. To draw out such an information from the 

adjacency matrix you have to scan over the corresponding 

row, which results in O(|V|) complexity. For the algorithms 

like DFS or based on it, use of the adjacency matrix results in 

overall complexity of O(|V|2), while it can be reduced to 

O(|V| + |E|), when using adjacency list. 

3. The last disadvantage, we want to draw you attention to, is 

that adjacency matrix requires huge efforts for 

adding/removing a vertex. In case, a graph is used for analysis 

only, it is not necessary, but if you want to construct fully 

dynamic structure, using of adjacency matrix make it quite 

slow for big graphs. 

Pros & cons of adjacency list---- 

Pros---- 

Adjacent list allows us to store graph in more compact form, 

than adjacency matrix, but the difference decreasing as a 

graph becomes denser. Next advantage is that adjacent list 

allows to get the list of adjacent vertices in O(1) time, which 

is a big advantage for some algorithms. 

Cons---- 

1. Adding/removing an edge to/from adjacent list is not as 

easy as for adjacency matrix. It requires, on the average, O(|E| 

/ |V|) time, which may result in cubical complexity for dense 

graphs to add all edges.  

2. Check, if there is an edge between two vertices can be done 

in O(|E| / |V|) when list of adjacent vertices is unordered or 

O(log2(|E| / |V|)) when it is sorted. This operation stays quite 

cheap.  

3. Adjacent list doesn't allow us to make an efficient 

implementation, if dynamically change of vertices number is 

required. Adding new vertex can be done in O(V), but 

removal results in O(E) complexity.  

Applications in computer science---- 

In computer science, an adjacency list is a data structure for 

representing graphs. In an adjacency list representation, we 

keep, for each vertex in the graph, a list of all other vertices 

which it has an edge to (that vertex's "adjacency list"). For 

instance, the representation suggested by van Rossum, in 

which a hash table is used to associate each vertex with an 

2 

http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Guido_van_Rossum
http://en.wikipedia.org/wiki/Hash_table
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array of adjacent vertices, can be seen as an example of this 

type of representation. Another example is the representation 

in Cormen et al. in which an array indexed by vertex numbers 

points to a singly-linked list of the neighbors of each vertex. 

One difficulty with the adjacency list structure is that it has no 

obvious place to store data associated with the edges of a 

graph, such as the lengths or costs of the edges. To remedy 

this, some texts, such as that of Goodrich and Tamassia, 

advocate a more object oriented variant of the adjacency list 

structure, sometimes called an incidence list, which stores for 

each vertex a list of objects representing the edges incident to 

that vertex.  

To complete the structure, each edge must point back to the 

two vertices forming its endpoints. The extra edge objects in 

this version of the adjacency list cause it to use more memory 

than the version in which adjacent vertices are listed directly, 

but these extra edges are also a convenient location to store 

additional information about each edge (e.g. their length). 

Conclusion------ 

The main alternative to the adjacency list is the adjacency 

matrix. For a graph with a sparse adjacency matrix an 

adjacency list representation of the graph occupies less space, 

because it does not use any space to represent edges that are 

not present. On the other hand, because each entry in an 

adjacency matrix requires only one bit, they can be 

represented in a very compact way, occupying only n2/8 bytes 

of contiguous space, where n is the number of vertices.  

Besides the space trade-off, the different data structures also 

facilitate different operations. It is easy to find all vertices 

adjacent to a given vertex in an adjacency list representation. 

Adjacency lists use memory in proportion to the number 

edges, which might save a lot of memory if the adjacency 

matrix is sparse. It is fast to iterate over all edges, but finding 

the presence or absence specific edge is slightly slower than 

with the matrix. 

To sum up, adjacency matrix is a good solution for dense 

graphs, which implies having constant number of vertices, but 

on the other hand, the adjacency list is a good solution for 

sparse graphs and lets us changing number of vertices more 

efficiently, than if using an adjacent matrix. But still there are 

better solutions to store fully dynamic graphs. 
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