
Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

179 | P a g w w w . c i r w o r l d . c o m

Role of Adjacency Matrix & Adjacency List in Graph Theory

Harmanjit Singh
Assistant Professor

PCTE Baddowal
Ludhiana,Punjab,India

 Richa Sharma

Assistant Professor

PCTE Baddowal
Ludhiana,Punjab,India

ABSTRACT
Today, graph theory has become major instrument that is used
in an array of fields. Some of these include electrical
engineering, mathematical research, sociology, economics,
computer programming/networking, business administration
and marketing. Indeed, many problems can be modeled with
paths formed by traveling along the edges of a certain graph.

Frequently referenced problems are efficiently planning routes
for mail delivery, garbage pickup and snow removal, which
can be solved using models that involve paths in graphs.
Given these kinds of problems, graphs can become extremely
complex, and a more efficient way of representing them is
needed in practice. This is where the concept of the adjacency
matrix & adjacency list comes into play.

Keywords
Adjacency matrix, adjacency list, Path matrix, Edge list,

Node list

1. INTRODUCTION
There are two standard ways of representing or maintaining a

graph G in memory of a computer.

1. Sequential representation of G using adjacent
matrix.

2. Linked representation of G using adjacent list.

Regardless of the way one maintains a graph G in the memory

of the computer, the graph G is normally input into the

computer by using its formal definition: a collection of nodes

and a collection of edges.

 Sequential representation of a graph

Adjacency Matrix---- In mathematics and computer science,

an adjacency matrix is a means of representing which vertices

of a graph are adjacent to which other vertices. Specifically,

the adjacency matrix of a finite graph G on n vertices is the n

× n matrix where the non diagonal entry aij is the number of

edges from vertex i to vertex j, and the diagonal entry aii,

depending on the convention, is either once or twice the

number of edges (loops) from vertex i to itself. Undirected

graphs often use the former convention of counting loops

twice, whereas directed graphs typically use the latter

convention. There exists a unique adjacency matrix for each

graph (up to permuting rows and columns), and it is not the

adjacency matrix of any other graph. In the special case of a

finite simple graph, the adjacency matrix is a (0, 1)-matrix

with zeros on its diagonal. If the graph is undirected, the

adjacency matrix is symmetric.

Suppose G is a simple directed graph with m nodes, and

suppose the nodes of G have been ordered and are called v1,

v2…, vm. Then the adjacency matrix A = (aij) of the graph G

is the m × m matrix defined as follows:

aij = { 1 if vi is adjacent to vj, i.e.; if there is an edge (vi, vj).

0 otherwise}

Such a matrix A, which contains entries of only 0 and 1, is

called a Bit matrix or a Boolean matrix.

The adjacency matrix A of graph G does depend on the

ordering of the nodes of G, that is, a different ordering of

nodes may result in a different adjacency matrix. However,

the matrices resulting from two different orderings are closely

related in that one can be obtained from the other by simply

interchanging rows and columns. Unless otherwise stated, we

will assume that the nodes of our graph G have a fixed

ordering.

Suppose G is an undirected graph. Then the adjacency matrix

A of G will be a symmetric matrix, i.e; one in which aij = aji

for every i and j. This follows from the fact that each

undirected edge [u, v] corresponds to the two directed edges

(u, v) and (v, u).

The above matrix representation of a graph may be extended

to multigraphs. Specifically, if G is a multigraph, then the

adjacency matrix of G is the m × m matrix A = (aij) defined

by setting aij, equal to the number of edges from vi to vj.

Consider the graph G in Fig. 1. Suppose the nodes are

stored in memory in a linear array DATA as follows:

DATA: X, Y, Z, W

Then we assume that the ordering of the nodes in G is as

follows: v1=X, v2=Y, v3=Z and v4=W. The adjacency matrix

A of G is as follows:

 0 0 0 1

 1 0 1 1

 A = 1 0 0 1

 0 0 1 0

Note that the number of 1’s in A is equal to the number of

edges in G.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

180 | P a g w w w . c i r w o r l d . c o m

Y X

Z W

 Fig. 1

Consider the powers A, A2, A3… of the adjacency matrix A

of a graph G. Let ak (i,j) = the ij entry in the matrix Ak.

Observe that a1 (i,j) = aij gives the number of paths of length

1 from node vi to node vj. One can show that a2 (i,j) gives the

number of paths of length 2 from vi to vj.

Adjacency matrix of a bipartite graph-----

The adjacency matrix A of a bipartite graph whose parts have

r and s vertices has the form:

where B is an r × s matrix and O is an all-zero matrix. Clearly,

the matrix B uniquely represents the bipartite graphs, and it is
commonly called its biadjacency matrix. Formally, let G = (U,
V, E) be a bipartite graph or bigraph with parts U = u1... ur
and V = v1,...,vs.

An r x s 0-1 matrix B is called the biadjacency matrix if Bi,j

= 1 iff .

If G is a bipartite multigraph or weighted graph then the
elements Bi,j are taken to be the number of edges between or
the weight of (ui,vj) respectively.

Path Matrix----

Let G be a simple directed graph with m nodes, v1, v2……,
vm. The path matrix or reach ability matrix of G is the m-
square matrix P= (pij) defined as follows:

Pij= {1 if there is a path from vi to vj

 {0 otherwise

Suppose there is a path from vi to vj. Then there must be a

simple path from vi to vj when vi ≠ vj, or there must be a

cycle from vi to vj when vi = vj. Since G has only m nodes,

such a simple path must have length m – 1 or less, or such a

cycle must have length m or less. This means that there is a

non- zero ij entry in the matrix Bm.

Variations---

The Seidel adjacency matrix or (0,−1,1)-adjacency matrix of a

simple graph has zero on the diagonal and entry aij = − 1 if ij

is an edge and +1 if it is not. This matrix is used in studying

strongly regular graphs and two-graphs. A distance matrix is

like a higher-level adjacency matrix. Instead of only providing

information about whether or not two vertices are connected,

also tells the distances between them. This assumes the length

of every edge is 1. A variation is where the length of an edge

is not necessarily 1.

Linked representation of graph

Adjacency list-----

In graph theory, an adjacency list is the representation of all
edges or arcs in a graph as a list. If the graph is undirected,
every entry is a set (or multiset) of two nodes containing the
two ends of the corresponding edge; if it is directed, every
entry is a tuple of two nodes, one denoting the source node
and the other denoting the destination node of the
corresponding arc. Typically, adjacency lists are unordered.
Let G be a directed graph with m nodes. The sequential

representation of G in memory---- i.e; the representation of G
by its adjacency matrix A--- has a number of major
drawbacks. First of all, it may be difficult to insert and delete
nodes in G. This is because the size of A may need to be
changed and the nodes may need to be reordered, so there
may be many changes in the matrix A. Furthermore, if the
number of edges is O(m) or O(m log2 m), then the matrix A
will be a sparse(will contain many zeros); hence a great deal
of space will be wasted. Accordingly, G is usually represented

in memory by a linked representation, also called an
adjacency structure.

Consider the graph G in Fig. 2(a). The table in Fig. 2(b)
shows each node in G followed by its adjacency list, which is
its list of adjacent nodes, also called its successors or

neighbors. Fig. 2(c) shows a schematic diagram of a linked
representation of G in memory.

Specifically, the linked representation will contain two lists
(or files), a node list NODE and an edge list EDGE, as
follows:

A D

 E

B C

 Fig. 2(a) Graph G

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

181 | P a g w w w . c i r w o r l d . c o m

Node Adjacency List

A B, C, D

B C

C

D C, E

E C

Fig. 2(b) Adjacency lists of G

Start NODE list EDGE list

 Fig. 2(c)

(a) Node list--- Each element in the list NODE will
correspond to a node in G, and it will be a record of the form:

NODE NEXT ADJ

Here NODE will be the name or key value of the node, NEXT

will be a pointer to the next node in the list NODE and ADJ
will be a pointer to the first element in the adjacency list of
the node, which is maintained in the list EDGE. The shaded
area indicates that there may be other information in the
record, such as the indegree INDEG of the node, the
outdegree OUTDEG of the node, the STATUS of the node

during the execution of an algorithm, and so on.
(Alternatively, one may assume that NODE is an array of
records containing fields such as NAME, INDEG, OUTDEG,
STATUS…) The nodes themselves, as pictured in Fig. 2(a)
and Fig. 2(b) will be organized as a linked list and hence will
have a pointer variable START for the beginning of the list
and a pointer variable AVAILN for the list of available space.
Sometimes, depending on the application, the nodes may be

organized as a sorted array or a binary search tree instead of a
linked list.

 (b) Edge list--- Each element in the list EDGE will
correspond to an edge of G and will be a record of the form:

DEST LINK

The field DEST will point to the location in the list NODE of

the destination or terminal node of the edge. The field LINK
will link together the edges with the same initial node, that is,
the nodes in the same adjacency list. The shaded area
indicates that there may be other information in the record
corresponding to the edge, such as a field EDGE containing
the labeled data of the edge when G is a labeled graph, a field

WEIGHT containing the weight of the edge when G is a
weighted graph, and so on. We also need a pointer variable
AVAILE for the list of available space in the list EDGE.

Fig. 3 shows how the graph G in Fig. 2(a) and Fig. 2(b) may
appear in memory. The choice of 10 locations for the list

NODE and 12 locations for the list EDGE is arbitrary.

START NODE NEXT ADJ

1 3

2 C 9 0

3 8

4 A 7 3

5 1

6 E 0 11

7 B 2 6

8 10

9 D 6 1

10 0

AVAILN

 DEST LINK AVAILE

Fig. 3

1 2 (C) 7

2 5

3 7 (B) 10

4 9 (D) 0

5 8

6 2 (C) 0

7 6 (E) 0

8 9

9 12

10 2 (C) 4

11 2 (C) 0

12 0

A ×

B ×

C ×

D ×

E × ×

4

S

t

a

r

t
 5

2

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

182 | P a g w w w . c i r w o r l d . c o m

The linked representation of a graph G that we have been
discussing may be denoted by

GRAPH(NODE, NEXT, ADJ, START, AVAILN, DEST,
LINK, AVAILE)

The representation may also include an array WEIGHT when
G is weighted or may include an array EDGE when G is a
labeled graph.

Data Structures---

When used as a data structure, the main alternative for the
adjacency matrix is the adjacency list. Because each entry in

the adjacency matrix requires only one bit, they can be
represented in a very compact way, occupying only n2 / 8
bytes of contiguous space, where n is the number of vertices.
Besides just avoiding wasted space, this compactness
encourages locality of reference.

On the other hand, for a sparse graph, adjacency lists win out,

because they do not use any space to represent edges which
are not present. Using a naïve array implementation on a 32-
bit computer, an adjacency list for an undirected graph
requires about 8e bytes of storage, where e is the number of
edges.

Noting that a simple graph can have at most n2 edges,
allowing loops, we can let d = e / n2 denote the density of the
graph. Then, 8e > n2 / 8, or the adjacency list representation
occupies more space, precisely when d > 1 / 64. Thus a graph
must be sparse indeed to justify an adjacency list
representation.

Besides the space tradeoff, the different data structures also
facilitate different operations. Finding all vertices adjacent to
a given vertex in an adjacency list is as simple as reading the
list.

With an adjacency matrix, an entire row must instead be

scanned, which takes O(n) time. Whether there is an edge
between two given vertices can be determined at once with an
adjacency matrix, while requiring time proportional to the
minimum degree of the two vertices with the adjacency list.

Pros & cons of adjacency matrix-----

Pros----

Adjacency matrix is very convenient to work with. Add

(remove) an edge can be done in O(1) time, the same time is

required to check, if there is an edge between two vertices.

Also it is very simple to program and in all our graph tutorials

we are going to work with this kind of representation.

Cons---

1. Adjacency matrix consumes huge amount of memory for

storing big graphs. All graphs can be divided into two

categories, sparse and dense graphs. Sparse ones contain not

much edges (number of edges is much less, that square of

number of vertices, |E| << |V|2). On the other hand, dense

graphs contain number of edges comparable with square of

number of vertices. Adjacency matrix is optimal for dense

graphs, but for sparse ones it is superfluous.

2. Next drawback of the adjacency matrix is that in many

algorithms you need to know the edges, adjacent to the

current vertex. To draw out such an information from the

adjacency matrix you have to scan over the corresponding

row, which results in O(|V|) complexity. For the algorithms

like DFS or based on it, use of the adjacency matrix results in

overall complexity of O(|V|2), while it can be reduced to

O(|V| + |E|), when using adjacency list.

3. The last disadvantage, we want to draw you attention to, is

that adjacency matrix requires huge efforts for

adding/removing a vertex. In case, a graph is used for analysis

only, it is not necessary, but if you want to construct fully

dynamic structure, using of adjacency matrix make it quite

slow for big graphs.

Pros & cons of adjacency list----

Pros----

Adjacent list allows us to store graph in more compact form,

than adjacency matrix, but the difference decreasing as a

graph becomes denser. Next advantage is that adjacent list

allows to get the list of adjacent vertices in O(1) time, which

is a big advantage for some algorithms.

Cons----

1. Adding/removing an edge to/from adjacent list is not as

easy as for adjacency matrix. It requires, on the average, O(|E|

/ |V|) time, which may result in cubical complexity for dense

graphs to add all edges.

2. Check, if there is an edge between two vertices can be done

in O(|E| / |V|) when list of adjacent vertices is unordered or

O(log2(|E| / |V|)) when it is sorted. This operation stays quite

cheap.

3. Adjacent list doesn't allow us to make an efficient

implementation, if dynamically change of vertices number is

required. Adding new vertex can be done in O(V), but

removal results in O(E) complexity.

Applications in computer science----

In computer science, an adjacency list is a data structure for

representing graphs. In an adjacency list representation, we

keep, for each vertex in the graph, a list of all other vertices

which it has an edge to (that vertex's "adjacency list"). For

instance, the representation suggested by van Rossum, in

which a hash table is used to associate each vertex with an

2

http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Guido_van_Rossum
http://en.wikipedia.org/wiki/Hash_table

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

183 | P a g w w w . c i r w o r l d . c o m

array of adjacent vertices, can be seen as an example of this

type of representation. Another example is the representation

in Cormen et al. in which an array indexed by vertex numbers

points to a singly-linked list of the neighbors of each vertex.

One difficulty with the adjacency list structure is that it has no

obvious place to store data associated with the edges of a

graph, such as the lengths or costs of the edges. To remedy

this, some texts, such as that of Goodrich and Tamassia,

advocate a more object oriented variant of the adjacency list

structure, sometimes called an incidence list, which stores for

each vertex a list of objects representing the edges incident to

that vertex.

To complete the structure, each edge must point back to the

two vertices forming its endpoints. The extra edge objects in

this version of the adjacency list cause it to use more memory

than the version in which adjacent vertices are listed directly,

but these extra edges are also a convenient location to store

additional information about each edge (e.g. their length).

Conclusion------

The main alternative to the adjacency list is the adjacency

matrix. For a graph with a sparse adjacency matrix an

adjacency list representation of the graph occupies less space,

because it does not use any space to represent edges that are

not present. On the other hand, because each entry in an

adjacency matrix requires only one bit, they can be

represented in a very compact way, occupying only n2/8 bytes

of contiguous space, where n is the number of vertices.

Besides the space trade-off, the different data structures also

facilitate different operations. It is easy to find all vertices

adjacent to a given vertex in an adjacency list representation.

Adjacency lists use memory in proportion to the number

edges, which might save a lot of memory if the adjacency

matrix is sparse. It is fast to iterate over all edges, but finding

the presence or absence specific edge is slightly slower than

with the matrix.

To sum up, adjacency matrix is a good solution for dense

graphs, which implies having constant number of vertices, but

on the other hand, the adjacency list is a good solution for

sparse graphs and lets us changing number of vertices more

efficiently, than if using an adjacent matrix. But still there are

better solutions to store fully dynamic graphs.

References

1. www.en.wikipedia.org/wiki/Adjacency_matrix

2. www.papers.ssrn.com/sol3/papers.cfm?abstract_id=16
94711

3. www.datastructures.itgo.com/graphs/adjmat.htm

4. www.wapedia.mobi/en/Adjacency_matrix#2

5. www.encyclopedia.com/doc/1O11-
adjacencymatrix.html

6. Data structures by schanum series.

7. Data structures by R.S Salaria

http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Singly-linked_list
http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Incidence_list
http://www.en.wikipedia.org/wiki/Adjacency_matrix
http://www.datastructures.itgo.com/graphs/adjmat.htm
http://wapedia.mobi/en/Adjacency_matrix#2
http://www.encyclopedia.com/doc/1O11-adjacencymatrix.html
http://www.encyclopedia.com/doc/1O11-adjacencymatrix.html

