International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

Improved Adaptive Huffman Compression Algorithm

Satpreet Singh
CEO, Singh Soft
Manteca, United States

satpreetsingh@ymail.com

1. ABSTRACT

In information age, sendingthe datafrom one end to another end
need lot of space as wel as time. Data compression is a
technique to compress the information source (e.g. a datafile, a
speech signal, an image, or a video signal) in possible few
numbers of bits. One of the major factors that influence the Data
Compression technique is the procedure to encode the source
data and space required for encoded data. There are many data
compressions methods which are used for data compression and
out of which Huffman is mostly used for same Huffman
dgorithms have two ranges static as well as adaptive. Static
Huffman a gorithm is a technique that encoded the data in two
passes. Infirst passit requires to cacul ate the frequency of each
symbol and in second pass it condructs the Huffman tree
Adaptive Huffman a gorithm is expanded on Huffman d gorithm
that construds the Huffman tree but take more space than Satic
Huffman agorithm. This pger introduces a new data
compression Algorithm which is based on Huffman coding This
agorithm not only reduces the number of pass but aso reduce
the storage space in compare to adgptive Huffman a gorithm and
comparableto static.

2. KEYWORDS: DataCompression, Satic Huffman,
Adaptive Huffman, Algorithm.

3. INTRODUCTION

Compression Technique is a standard that squeeze source data,
to take less space for storing the same data. The only threet to
compress the data is loss of vauable data there are many
dgorithms existing in the information technology and every
d gorithm has its own advantages and disadvantages. Huffman is
one of the techniques which are highly used by many solution
provider companies now in these days. This technique has two
principd adgorithms staic as well as adaptive. This pger is
organized as follows

Section 4 illustrates the brief introduction of Staic Huffman
a gorithm Section 5 defines the brief introduction of Adaptive
Huffman dgorithm Section 6 defines the design strategy of
Improved adaptive Huffman dgorithm and findly the
conclusion are gven in Section 7.

16

Harmandeep Singh
Assistant Professor
Department of Computer Science
Sri Guru Angad Dev College, Khadoor Sahib
gill.gurseerat@gmail.com

4. Static Huffman algorithm

The Satic Huffman agorithm developed by David Huffman
(1952) generates the encoded data in two passes that are as
follows

1. Cadculate the frequency of each different symbol
present in the source data After caculating
frequencies construct the table of dl frequency in
decressing order by sort it of each different symbol in
decreasing order

2. Create Huffman tree by combining the lesst two
symbols into one compasite sy mbol

Example
Satic Huffman Treefor encodingthe Data “ casaddbddd “
First pass:
Symbol Frequency
a 3
b 1
c 1
d 5
Sort the Frequencies in decreasing order
Symbol Freguency
d 5
a 3
b 1
c 1

Second pass;
dabcl0
1 0
d5 abch
1 0
a3 bc2
bl cl
1 0
Symbol code
a 01
b 001
c 000
d 1

000 01 01 01 1

c a a a d
1 001 1 1 1
d b d d d

Results: Encoded data is seventeen bits long
For implementing Satic Huffman Encoding require Two Passes.

5. Adaptive Huffman algorithm

Expanding on the static Huffman dgorithm, Faler and
Gadlagher [Faller 1973; Gallagher 1978], and later Knuth [Knuth
1985] and Vitter [Vitter 1987], developed a way to perform
Satic Huffman d gorithm as one pass tha are as follows

1. Initidly Adaptive Huffman dgorithm generates a
Huffman tree with dl different symbols frequency
count to one and took code for first symbol in the
source data For the second symbol it generates the
second Huffman tree and took the code for second
symbol (Firgd and Second symbol may be same or
different) and so on up to lagt bit (byte) of source data

17

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

Concept

The basic concept behind an adaptive compression agorithm is
very simple:

Initidize the modd
Repeat for each character

{

Encode character
Updaethe modd

}

Decompression works the sameway . As long as both sides have
the same initidize and update mode al gorithms, they will have
the same information.

Example

Adaptive Huffman Trees for encodingthe Data “ caaaddbddd*

1 dbcad
da2 1 0 ca2
dl bl cl al
1 0 1 0
a-00 b-10 c01 d-11
2. badcs
bad3 0 ¢2
b2 ad2
1 0
al di
1 0
a-101 b-11 c-0 d-100

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

3 cdbab
1 0 6
achd9
c2 dba4
a4 1 0 cbhds
1 db2 0 a2
1 0
c2 bd3
di bl
1 0
bl d2
1 0
a-00 b-010 c-1 d-011 al b-001 c-01 d-000
4. adbc7 abcd10
7. 0
a3 4 o dbcA a4 bcdé
1 0
1 db2 0 c2 be3 d3
di bl bl 1 c2 0
1 0

al b-011 c-010 d-00

al b-010 c-00 d-011

8.
adbcll
5.
dbca8 a4 dbc7
T 0
4
dbc4 ad d3 bca
/ 1 0
db2 c2 b2 c2
0
1 0
di bl
1 0

al b-001 c-000 d-01
a0 b-110 c¢-10 d-111

18

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

9. adifferent tree for every next symbol (different or same). Every tree
makes a different code for next symbol (even for same symbol)

thereforeit is must to remember dl trees for decodingthe data.

abcdl2

a4 bcd8 6. Improved Adaptive Huffman Algorithm

Satic Huffman agorithm first scans dl the source data and
count frequency of each symbol. It then sortsthe frequency table
bca d4 in decreasing order. In second pass it constructs the tree based
on the pass one table. But in this method some time the source
datais so lengthy it takes so much time to condruct atablethat
b2 c2 is wastage of time as wel | as space required to storethetable.

In Adaptive Huffman dgorithm, while encoding the sy mbols,

1 0 after each symbol is encoded we need to update thetree. Sameis

aso done in decoding the code. That means there is some

processing overburden involved. The encoded data by Adaptive

a1 b-011 c-010 d-00 Huffman agorithm requires more space than Satic Huffman

encoded data The other mgor drawback of the Adaptive

Huffman agorithm for encoding the data it must reguire in

advance that how many different symbols are present in the

10. dbcal3 source data. So it will first scan dl the source data to determine

that how many different symbols are present in the source data

The some other mgor drawbacks of adgptive Huffman
dva bca8 a gorithm are as follows:

a Adsptive Huffman require more space to store the
bea a4 compressed data
b. Adaptive Huffman must know in advance that how
many different symbols are present in the data So it
will scan dl the string before constructing the first
b2 c2 tree.

c. Itisvery timeconsuming, it first construct the tree and

! 0 than take the code for the symbol, for the next symbol
it do the same (up to the last sy mbol).
d. In adaptive Huffman agorithm many of the different
symbols having same code in the encoded data which
a00 b-011 ¢010 d-1 crestes a lot of confusing while decompressed the

data
e In adaptive Huffman same symbol that occurs
frequently has different code So it can creaste
confusion while decompressing the data
ol 101 0 ! ut 000 f. Findly while decomp?essinggthe data we need all
trees, for smaler data it is ok but for large data it
needs a huge storage space.
Improved Adaptive Huffman dgorithm which is based on
existing Huffman al gorithm having a one pass in compareto the
existing static Huffman al gorithms and requires less space for
storing the encoded data as compare to adaptive Huffman

a gorithm. The pumposed method with its dgorithm is as follows:

011 01 00 1

b d d d

)) 1. Initidly Improved adaptive Huffman agorithm
Result: Encoded data is twenty two bits long generates strictly binary tree on readingfirst symbol in

For implementing Adaptive Huffman adgorithm we must need to gﬁi%ug%eff t% Eg%%%fo?yggfggg%iigg{%

know in advance that how mary different symbols are present in the thelast symbol it makes the final Huffman tree.

source data. Adaptive Huffman Encoded data takes more space than

static Huffman Encoded data. Adaptive Huffman Encoding generates ~ Advantages of Improved Adeptive Huffman over Adeptive
Huffmean are;

19

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

a Improved adaptive Huffman requires less space to
store the compressed data.

b. It saves the time because it does not need to scan the
whole string for construaging the first tree. It aso
saves the time while constructing trees e.g it needs
only one symbol for constructing the first tree unlike : ca2
in adaptive Huffman requires al different symbols to
construct the tree.

c. In Improved adaptive Huffman one symbol (even 1 0
oceurs frequently cl
) has asame code.

d. Inimproved adaptive Huffman, while constructingthe
next tree we do not need to remember the previous
tree.

e. Finaly while decompressing the data we need of only
final tree.

Algorithm 3

al

ac3

1. Scanfirst Symbol and initiaize their frequency to 1
2. Scanthenext symbol from the source data
If any previous symbol = next symbol then a2 cl

Increment the frequency of that
previous symbol

If any previous symbol

frequency < recently ac4

incremented sy mbol frequency

then
Interchange both nodes

Else

acd5

Initidize their frequency to

1
a3 1 cd2 o

3. Cresate strictly binary tree with left and right node
(Left or Right nodecanbe NULL). And theroot is
the composite Symbols of left and right nodes. o1 a1
Assign 0to Right node and 1to Left node.

4. Repeat gep 2to 4till End of Sourcedata

1 0
Example
. “ " 6. adc6
New Huffman tree for encodingthedata “ caaaddbddd
1 0
a3 dc3
1
cl 1 0
d2 cl
1 0
cl NIL

20

7.
adcb7
1 a3 0 dcbh4
1 d2 0 ch2
1 Q
cl bl
8. adcbs
ai 0 dcb5
1 0]
d3 ch2
cl bl
1 0
9.
dach9
1 0
d4 ach5
1 0
a3 ch2
Q
cl bl

5. Fina treefrom whereto construct thetable for compression is
as follows:

dacb10

d5 ach5

a3 ch2

cl bl

21

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

1 0
1 0

Symbol code
a 01
b 000
c 001
d 1
001 01 01 01 1 1
c a a a d d
000 1 1 1
b d d d

Result: Encoded data is seventeen bits long

This method requires only one pass to encode source data and
there is no need to scan each one of symbol before encoding.
Encoded data needs less space as compareto Adaptive Huffman
Encoding

7. Conclusion

Improved adaptive Huffman agorithm requires only single tree
to compress the data instead of al tree required by Adaptive
Huffman which takes lot of storage space. The Adaptive
Huffman a gorithm required to scan all the charactersin a string
at start to construct atree where as Improved Adaptive Huffman
start from first character which is time saving. It is further
concluded that the encoded data of new Huffman adgorithm is
less than of adaptive and comparableto static.

8. References
[1]. D. A. Huffman, "A method for the condruction of
minimum-redundancy codes,” Proc. IRE, vol. 40, pp. 1098-

1101, 1952.

[2]. Knuth, D.E., “Dynamic Huffman Coding’, Journa of
Algorithms 6,2(June), 1985.

[3]. Faler, N. “An adaptive sysem for data compression” In
Record of the 7" Asilomar Conference on Circuits, Systems and

Computers (Pacific Grove, Calif., Nov.). Nava Postgraduate
School, M onterey, Cdif., pp. 593-597, 1973.

[4]. Gdlager, R.G. “Variations on atheme by Huffman” |IEEE
Trans. Inf. Theory 24, 6 (Nov.), 668-674, 1978.

[5].Vitter, J.S “ Design and andysis of dynamic Huffman codes”
J.ACM 34,4 (Od.), 825-845, 1987.

[6] Witten, I.H., Ned, RM., and Cleary, J.G. “Arithmetic
coding for data compression” Communications of the ACM, vol.
30, 520-540, 1987.

[7] Lelewer, D.A., Hirschberg D.S, “Data compression”, ACM
Computing Survey's 19,3 (Sept.): 261-266, 1987.

[8] Lempd, A., Ziv J., “A Universa Algorithm for Sequentia
Data Compression”, |EEE Transaction on Information Theory
23,3 (May), 337-343, 1977.

[99 T.A Wech. “A technique for high-performance data
compression” In IEEE Computer, 17:6:8-19, 1984.

22

International Journal of Computers & Technology
Volume 1 No.1 Dec. 2011

[10] Cormack, G.V., and Horspool, R.N. “Algorithms for
Adaptive Huffman Codes” Inform Process. Lett. 18, 3 (Mar.),
159-165, 1984.

[11] Moffat, A., Ned, RM., and Witten, I.H. “Arithmetic
coding revisited” ACM Transactions on Information Systems,
vol. 16, 256-294, 1995.

[12] Ross Arnold and Tim Bell. “ A compus for the evauation of
lossless compression agorithms” In Daa Compression
Conference, pages 201{210. IEEE Computer Society Press,
1997.

[13] B. F. Varn, "Optimad variable length codes" Inform. Contr.,
val. 19, pp. 289-301, 1971.

[14] A. Lempd and J. Ziv, "On the complexity of finite
sequences,” |EEE Trans. Inform. Theory, vol. IT-22, pp. 75-81,
Jan. 1976.

[15] L. D. Davisson, "Universa noisdess coding," |IEEE Trans.
Inform. Theory, vol. IT-19, pp. 783-795, Nov. 1973.

	ABSTRACT
	KEYWORDS: Data Compression, Static Huffman, Adaptive Huffman, Algorithm.
	INTRODUCTION
	 Static Huffman algorithm
	Results: Encoded data is seventeen bits long
	 Adaptive Huffman algorithm
	Result: Encoded data is twenty two bits long

	Improved Adaptive Huffman Algorithm
	Result: Encoded data is seventeen bits long

	 Conclusion
	References

