
International Journal of Computers & Technology

Volume 1 No.1 Dec. 2011

 16

Improved Adaptive Huffman Compression Algorithm

Satpreet Singh
CEO, Singh Soft

Manteca, United States

satpreetsingh@ymail.com

Harmandeep Singh
Assistant Professor

Department of Computer Science
Sri Guru Angad Dev College, Khadoor Sahib

gill.gurseerat@gmail.com

1. ABSTRACT

In information age, sending the data from one end to another end

need lot of space as well as time. Data compression is a

technique to compress the information source (e.g. a data file, a

speech signal, an image, or a video signal) in possible few

numbers of bits. One of the major factors that influence the Data
Compression technique is the procedure to encode the source

data and space required for encoded data. There are many data

compressions methods which are used for data compression and

out of which Huffman is mostly used for same. Huffman

algorithms have two ranges static as well as adaptive. Static

Huffman algorithm is a technique that encoded the data in two

passes. In first pass it requires to calculate the frequency of each

symbol and in second pass it constructs the Huffman tree.
Adaptive Huffman algorithm is expanded on Huffman algorithm

that constructs the Huffman tree but take more space than Static

Huffman algorithm. This paper introduces a new data

compression Algorithm which is based on Huffman coding. This

algorithm not only reduces the number of pass but also reduce

the storage space in compare to adaptive Huffman algorithm and

comparable to static.

2. KEYWORDS: Data Compression, Static Huffman,
Adaptive Huffman, Algorithm.

3. INTRODUCTION

Compression Technique is a standard that squeeze source data,

to take less space for storing the same data. The only threat to

compress the data is loss of valuable data there are many

algorithms existing in the information technology and every

algorithm has its own advantages and disadvantages. Huffman is
one of the techniques which are highly used by many solution

provider companies now in these days. This technique has two

principal algorithms static as well as adaptive. This paper is

organized as follows

Section 4 illustrates the brief introduction of Static Huffman

algorithm Section 5 defines the brief introduction of Adaptive

Huffman algorithm Section 6 defines the design strategy of

Improved adaptive Huffman algorithm and finally the

conclusion are given in Section 7.

4. Static Huffman algorithm

The Static Huffman algorithm developed by David Huffman

(1952) generates the encoded data in two passes that are as

follows

1. Calculate the frequency of each different symbol
present in the source data. After calculating
frequencies construct the table of all frequency in
decreasing order by sort it of each different symbol in
decreasing order

2. Create Huffman tree by combining the least two
symbols into one composite symbol

Example

Static Huffman Tree for encoding the Data “caaaddbddd “

First pass:

 Symbol Frequency

 a 3

 b 1

 c 1

 d 5

Sort the Frequencies in decreasing order

 Symbol Frequency

 d 5

 a 3

 b 1

 c 1

International Journal of Computers & Technology

Volume 1 No.1 Dec. 2011

 17

dabc10

d5 abc5

a3 bc2

b1 c1

dbca4

da2 ca2

c1 a1 d1 b1

badc5

bad3 c2

b2 ad2

a1 d1

Second pass;

 1 0

 1 0

 1 0

Symbol code

a 01

b 001

c 000

d 1

000 01 01 01 1

c a a a d

1 001 1 1 1

d b d d d

Results: Encoded data is seventeen bits long
For implementing Static Huffman Encoding require Two Passes.

5. Adaptive Huffman algorithm

Expanding on the static Huffman algorithm, Faller and

Gallagher [Faller 1973; Gallagher 1978], and later Knuth [Knuth
1985] and Vitter [Vitter 1987], developed a way to perform

Static Huffman algorithm as one pass that are as follows

1. Initially Adaptive Huffman algorithm generates a
Huffman tree with all different symbols frequency
count to one and took code for first symbol in the
source data. For the second symbol it generates the
second Huffman tree and took the code for second
symbol (First and Second symbol may be same or
different) and so on up to last bit (byte) of source data.

Concept

The basic concept behind an adaptive compression algorithm is

very simple:

Initialize the model
 Repeat for each character
 {
 Encode character
 Update the model
 }
Decompression works the same way. As long as both sides have

the same initialize and update model algorithms, they will have

the same information.

Example

Adaptive Huffman Trees for encoding the Data “ caaaddbddd“

1.

 1 0

 1 0 1 0

a-00 b-10 c-01 d-11

2.

 1 0

 1 0

 1 0

a-101 b-11 c-0 d-100

International Journal of Computers & Technology

Volume 1 No.1 Dec. 2011

 18

cdba6

c2 dba4

db2 a2

d1 b1

adbc7

a3 dbc4

db2 c2

d1 b1

dbca8

dbc4 a4

db2 c2

d1 b1

acbd9

a4 cbd5

c2 bd3

b1 d2

abcd10

a4 bcd6

bc3 d3

b1 c2

adbc11

a4 dbc7

d3 bc4

b2 c2

3.

 1 0

 1 0

 1 0

a-00 b-010 c-1 d-011

4.

 1 0

 1 0

 1 0

a-1 b-010 c-00 d-011

5.

 1 0

 1 0

 1 0

a-0 b-110 c-10 d-111

6.

 1 0

 1 0

 1 0

a-1 b-001 c-01 d-000

7. 1 0

 1 0

 1 0

a-1 b-011 c-010 d-00

8.

 1 0

 1 0

 1 0

a-1 b-001 c-000 d-01

International Journal of Computers & Technology

Volume 1 No.1 Dec. 2011

 19

abcd12

a4 bcd8

bc4 d4

b2 c2

dbca13

d5 bca8

bc4 a4

b2 c2

9.

 1 0

 1 0

 1 0

a-1 b-011 c-010 d-00

10.

 1 0

1 0

 1 0

a-00 b-011 c-010 d-1

01 101 00 1 111 000

c a a a d d

011 01 00 1

b d d d

Result: Encoded data is twenty two bits long

For implementing Adaptive Huffman algorithm we must need to

know in advance that how many different symbols are present in the

source data. Adaptive Huffman Encoded data takes more space than

static Huffman Encoded data. Adaptive Huffman Encoding generates

a different tree for every next symbol (different or same). Every tree

makes a different code for next symbol (even for same symbol)

therefore it is must to remember all trees for decoding the data.

6. Improved Adaptive Huffman Algorithm

Static Huffman algorithm first scans all the source data and

count frequency of each symbol. It then sorts the frequency table

in decreasing order. In second pass it constructs the tree based

on the pass one table. But in this method some time the source

data is so lengthy it takes so much time to construct a table that
is wastage of time as well as space required to store the table.

 In Adaptive Huffman algorithm, while encoding the symbols,

after each symbol is encoded we need to update the tree. Same is

also done in decoding the code. That means there is some

processing overburden involved. The encoded data by Adaptive

Huffman algorithm requires more space than Static Huffman

encoded data. The other major drawback of the Adaptive

Huffman algorithm for encoding the data it must require in
advance that how many different symbols are present in the

source data. So it will first scan all the source data to determine

that how many different symbols are present in the source data.

The some other major drawbacks of adaptive Huffman

algorithm are as follows:

a. Adaptive Huffman require more space to store the
compressed data.

b. Adaptive Huffman must know in advance that how
many different symbols are present in the data. So it
will scan all the string before constructing the first
tree.

c. It is very time consuming, it first construct the tree and
than take the code for the symbol, for the next symbol
it do the same (up to the last symbol).

d. In adaptive Huffman algorithm many of the different
symbols having same code in the encoded data which
creates a lot of confusing while decompressed the
data.

e. In adaptive Huffman same symbol that occurs
frequently has different code. So it can create
confusion while decompressing the data.

f. Finally while decompressing the data we need all
trees, for smaller data it is ok but for large data it
needs a huge storage space.

Improved Adaptive Huffman algorithm which is based on

existing Huffman algorithm having a one pass in compare to the

existing static Huffman algorithms and requires less space for

storing the encoded data as compare to adaptive Huffman

algorithm. The purposed method with its algorithm is as follows:

1. Initially Improved adaptive Huffman algorithm
generates strictly binary tree on reading first symbol in
the source data. For the next symbol it generates a tree
and so on up to last symbol of source data. On reading
the last symbol it makes the final Huffman tree.

Advantages of Improved Adaptive Huffman over Adaptive

Huffman are:

International Journal of Computers & Technology

Volume 1 No.1 Dec. 2011

 20

ca2

c1 a1

c1

c1 NIL

ac3

a2 c1

ac4

a3 c1

acd5

a3 cd2

c1 d1

adc6

a3 dc3

d2 c1

a. Improved adaptive Huffman requires less space to
store the compressed data.

b. It saves the time because it does not need to scan the
whole string for constructing the first tree. It also
saves the time while constructing trees e.g. it needs
only one symbol for constructing the first tree unlike
in adaptive Huffman requires all different symbols to
construct the tree.

c. In Improved adaptive Huffman one symbol (even
occurs frequently
) has a same code.

d. In improved adaptive Huffman, while constructing the
next tree we do not need to remember the previous
tree.

e. Finally while decompressing the data we need of only
final tree.

Algorithm

1. Scan first Symbol and initialize their frequency to 1
2. Scan the next symbol from the source data

If any previous symbol = next symbol then

 Increment the frequency of that

 previous symbol

 If any previous symbol

 frequency < recently

 incremented symbol frequency

 then

 Interchange both nodes

Else

 Initialize their frequency to

 1

3. Create strictly binary tree with left and right node
(Left or Right node can be NULL). And the root is
the composite Symbols of left and right nodes.
Assign 0 to Right node and 1to Left node.

4. Repeat step 2 to 4 till End of Source data.

Example

New Huffman tree for encoding the data “ caaaddbddd ”

1.

 1 0

2.

 1 0

3.

 1 0

4.

 1 0

5.

 1 0

 1 0

6.

 1 0

 1 0

International Journal of Computers & Technology

Volume 1 No.1 Dec. 2011

 21

adcb7

a3 dcb4

d2 cb2

c1 b1

adcb8

a3 dcb5

d3 cb2

c1 b1

dacb9

d4 acb5

a3 cb2

c1 b1

dacb10

d5 acb5

a3 cb2

c1 b1

7.

 1 0

 1 0

 1 0

8.

 1 0

 1 0

 1 0

9.

 1 0

 1 0

1 0

5. Final tree from where to construct the table for compression is

as follows:

1 0

 1 0

 1 0

Symbol code

a 01

b 000

c 001

d 1

001 01 01 01 1 1

c a a a d d

000 1 1 1

b d d d

Result: Encoded data is seventeen bits long

This method requires only one pass to encode source data and

there is no need to scan each one of symbol before encoding.

Encoded data needs less space as compare to Adaptive Huffman

Encoding

7. Conclusion

Improved adaptive Huffman algorithm requires only single tree

to compress the data instead of all tree required by Adaptive

Huffman which takes lot of storage space. The Adaptive
Huffman algorithm required to scan all the characters in a string

at start to construct a tree where as Improved Adaptive Huffman

start from first character which is time saving. It is further

concluded that the encoded data of new Huffman algorithm is

less than of adaptive and comparable to static.

8. References
[1]. D. A. Huffman, "A method for the construction of
minimum-redundancy codes," Proc. IRE, vol. 40, pp. 1098-

1101, 1952.

[2]. Knuth, D.E., “Dynamic Huffman Coding”, Journal of

Algorithms 6,2(June), 1985.

[3]. Faller, N. “An adaptive system for data compression” In
Record of the 7 th Asilomar Conference on Circuits, Systems and

International Journal of Computers & Technology

Volume 1 No.1 Dec. 2011

 22

Computers (Pacific Grove, Calif., Nov.). Naval Postgraduate

School, Monterey, Calif., pp. 593-597, 1973.

[4]. Gallager, R.G. “Variations on a theme by Huffman” IEEE

Trans. Inf. Theory 24, 6 (Nov.), 668-674, 1978.

[5].Vitter, J.S. “Design and analysis of dynamic Huffman codes”

J. ACM 34, 4 (Oct.), 825-845, 1987.

[6] Witten, I.H., Neal, R.M., and Cleary, J.G. “Arithmetic

coding for data compression” Communications of the ACM, vol.

30, 520-540, 1987.

[7] Lelewer, D.A., Hirschberg D.S., “Data compression”, ACM

Computing Surveys 19,3 (Sept.): 261-266, 1987.

[8] Lempel, A., Ziv J., “A Universal Algorithm for Sequential

Data Compression”, IEEE Transaction on Information Theory

23,3 (May), 337-343, 1977.

[9] T.A Welch. “A technique for high-performance data

compression” In IEEE Computer, 17:6:8–19, 1984.

[10] Cormack, G.V., and Horspool, R.N. “Algorithms for

Adaptive Huffman Codes” Inform Process. Lett. 18, 3 (Mar.),

159-165, 1984.

[11] Moffat, A., Neal, R.M., and Witten, I.H. “Arithmetic

coding revisited” ACM Transactions on Information Systems,

vol. 16, 256-294, 1995.

[12] Ross Arnold and Tim Bell. “A corpus for the evaluation of

lossless compression algorithms” In Data Compression

Conference, pages 201{210. IEEE Computer Society Press,

1997.

[13] B. F. Varn, "Optimal variable length codes" Inform. Contr.,

vol. 19, pp. 289-301, 1971.

[14] A. Lempel and J. Ziv, "On the complexity of finite

sequences," IEEE Trans. Inform. Theory, vol. IT-22, pp. 75-81,

Jan. 1976.

[15] L. D. Davisson, "Universal noiseless coding," IEEE Trans.

Inform. Theory, vol. IT-19, pp. 783-795, Nov. 1973.

	ABSTRACT
	KEYWORDS: Data Compression, Static Huffman, Adaptive Huffman, Algorithm.
	INTRODUCTION
	 Static Huffman algorithm
	Results: Encoded data is seventeen bits long
	 Adaptive Huffman algorithm
	Result: Encoded data is twenty two bits long

	Improved Adaptive Huffman Algorithm
	Result: Encoded data is seventeen bits long

	 Conclusion
	References

